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Abstract
Madagascar’s biodiversity is notoriously threatened by deforestation and climate change. Many of these organisms are rare,
cryptic, and severely threatened, making population-level sampling unrealistic. Such is the case with Madagascar’s dwarf
lemurs (genus Cheirogaleus), the only obligate hibernating primate. We here apply comparative genomic approaches to
generate the first genome-wide estimates of genetic diversity within dwarf lemurs. We generate a reference genome for the
fat-tailed dwarf lemur, Cheirogaleus medius, and use this resource to facilitate analyses of high-coverage (~30×) genome
sequences for wild-caught individuals representing species: C. sp. cf. medius, C. major, C. crossleyi, and C. sibreei. This
study represents the largest contribution to date of novel genomic resources for Madagascar’s lemurs. We find concordant
phylogenetic relationships among the four lineages of Cheirogaleus across most of the genome, and yet detect a number of
discordant genomic regions consistent with ancient admixture. We hypothesized that these regions could have resulted from
adaptive introgression related to hibernation, indeed finding that genes associated with hibernation are present, though most
significantly, that gene ontology categories relating to transcription are over-represented. We estimate levels of
heterozygosity and find particularly low levels in an individual sampled from an isolated population of C. medius that
we refer to as C. sp. cf. medius. Results are consistent with a recent decline in effective population size, which is evident
across species. Our study highlights the power of comparative genomic analysis for identifying species and populations of
conservation concern, as well as for illuminating possible mechanisms of adaptive phenotypic evolution.

Introduction

We are in a race against time to preserve species and
habitats, and an urgent goal is to identify those populations
that are most immediately threatened by shrinking geo-
graphic distributions and long-term decreases in population
size. Extinction rate estimates reveal recent and rapid loss of
biodiversity, with mammals showing the highest extinction
rates (Ceballos et al. 2015; Ceballos and Ehrlich 2018).
Anthropogenic activity has been identified as a primary
driver of this global environmental change (Dirzo et al.
2014), and leads to habitat loss, overexploitation, and
accelerated climate change (Haddad et al. 2015). The dis-
tributions of non-human primates overlap extensively with a
large and rapidly growing human population, and the
unintentional battle for resources has resulted in an esti-
mated ~60% of species being threatened with extinction and
~75% of populations in decline (Estrada et al. 2017). The
lemurs of Madagascar comprise a clade that contains
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roughly 20% of all primate species and starkly illustrates the
negative impacts of anthropogenic activity on non-human
primates (Burns et al. 2016; Salmona et al. 2017): >90% of
lemur species are currently threatened with extinction based
on International Union for Conservation of Nature (IUCN)
Red List assessments (IUCN 2019).

Madagascar’s biota is not only largely endemic but also
highly diverse (Goodman and Bernstead 2007). The unique
geological and evolutionary history of the island, combined
with the contemporary degradation of habitats, has led to an
urgent need to understand both their evolutionary history
and the ecological interactions between lemurs and the
ecosystems in which they occur (Albert-Daviaud et al.
2018). For example, quaternary climatic variation created
periods of glaciation worldwide that resulted in cooler and
more arid climates at lower elevations in Madagascar,
whereas periods of glacial minima resulted in warmer and
more humid climates (Rakotoarinivo et al. 2013). These
climatic shifts have been proposed as a driver of speciation
in Madagascar (Wilmé et al. 2006), and may have left
signatures of population size changes, divergence and
introgression in the genomes of the endemic biota. Based on
broad climatic trends, one prediction is that low-altitude
species would have experienced changes in the location and
size of suitable habitat, this could have led to changes in Ne

that may have left a detectable signature in the genome.
Similarly, we expect that high-altitude species will have had
more stable Ne through time. Our study aims to investigate
these possibilities.

Here, we focus on Madagascar’s dwarf lemurs (genus
Cheirogaleus). The genus has undergone substantial taxo-
nomic revisions in recent years (Rumpler et al. 1994; Pas-
torini et al. 2001; Groeneveld et al. 2009, 2010, 2011; Lei
et al. 2014, 2015; Frasier et al. 2016; Mclain et al. 2017),
though four species complexes have remained generally
well resolved: Cheirogaleus sibreei, C. medius, C. cross-
leyi, and C. major. All dwarf lemurs are small (between 150
and 450 g), nocturnal, obligate hibernating primates. They
are distributed across Madagascar and its heterogeneous
habitats, from high plateau to low elevation, in the dry west
of the island, the tropical east (Goodman and Bernstead
2007), and occur sympatrically in many of these habitats
(Blanco et al. 2009). All populations undergo seasonal
hibernation despite living in drastically different climatic
environments, wet to dry, warm to cold, with some species
hibernating for up to 7 months of the year. The hibernation
phenotype is suspected to be ancestral for the clade,
although with subsequent variation in its manifestation
(Faherty et al. 2018). For example, C. sibreei occupies cold
environments at high elevation and hibernates for up to
7 months per year (Blanco et al. 2018), while the sister
species C. major and C. crossleyi typically occur at lower
altitudes and hibernate for shorter periods of time

(~4 months; Blanco et al. 2018). C. medius displays a
similar hibernation phenotype to that of C. sibreei, hiber-
nating for up to 7 months of the year, but in the highly
seasonal, dry deciduous forests of the west.

Conservation efforts must consider current demographics
when designing management strategies for populations in
decline (Harrison and Larson 2014). Effective population
size (Ne) is a well-established parameter for identifying
populations at risk (Nunziata and Weisrock 2018; Yoder
et al. 2018), giving insight into the strength of drift and the
degree of inbreeding (Chen et al. 2016). Genetic diversity is
proportional to Ne in a population of constant size (Kimura
1968), and estimates of changes in Ne though time can help
us better understand potential selective and demographic
forces that have affected present-day populations (Prado-
martinez et al. 2013; Figueiró et al. 2017; Árnason et al.
2018; Vijay et al. 2018). Failure to accommodate for
changes in genetic diversity over time in populations of
conservation concern can lead to elevated extinction risks
(Pauls et al. 2013) given that levels of quantitative genetic
variation necessary for adaptive evolution become reduced,
and deleterious mutations can accumulate (Rogers and
Slatkin 2017). Though Ne is typically considered at the
population level, it is also important to assess how diversity
varies among species. Characterizing genetic diversity in a
phylogenetic context requires an informed understanding of
species boundaries, and the very nature of species bound-
aries carries the expectation that phenotypes and genomic
regions remain differentiated in the face of potential
hybridization and introgression (Harrison and Larson 2014).

By investigating the ancestral demography of living
species we can make inferences about their current genetic
health and prospects for survival (Prado-martinez et al.
2013). The development of methods such as pairwise and
multiple sequentially Markovian coalescent (MSMC) allows
for the use of a single biological sample to give insight into
an individual’s ancestry, and theoretically, to the changes in
conspecific Ne over considerable time periods (Li and Durbin
2011; Schiffels and Durbin 2014). These techniques have
been used to identify specific timescales of species declines,
such as in the case of the woolly mammoth (Mammuthus
primigenius) wherein genomic meltdown in response to low
Ne is thought to have contributed to its extinction (Palk-
opoulou et al. 2015; Rogers and Slatkin 2017). Under-
standing the speed of ancestral population declines, from
the reduction in Ne and the accumulation of detrimental
mutations, to genomic meltdown, is critical for the con-
servation of extant species. Importantly, effective popula-
tion size, genetic diversity, and species boundaries can all
be used in conservation planning and, directly used to cal-
culate IUCN ‘Red List' qualification.

A genomic approach offers increased power and preci-
sion to address the questions outlined above. For example,
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by looking at patterns of genetic variation found within
hominid genomes, numerous studies have revealed instan-
ces of interbreeding and adaptive introgression that occur-
red between early modern humans and archaic hominids
(Hajdinjak et al. 2018; Slon et al. 2018). Admixture
between Neanderthals and modern humans has, for exam-
ple, left detectable signatures in the genome sequences of
modern humans (Harris and Nielsen 2016), which can be
identified in the genome sequences of single individuals
(Green et al. 2010a; Hajdinjak et al. 2018; Slon et al. 2018).
A focus on making use of the entirety of information con-
tained within a single genome has also been beneficial for a
number of non-human study systems where the ability to
collect and sequence many samples is prohibitively difficult
(Prado-martinez et al. 2013; Meyer et al. 2015; Palkopoulou
et al. 2015; Abascal et al. 2016; Figueiró et al. 2017; Rogers
and Slatkin 2017; Árnason et al. 2018).

Using whole genome sequences for five individuals
across four species of dwarf lemur, we ask if previously
published phylogenetic relationships, based on mitochon-
drial and morphological comparisons (Groeneveld et al.
2009, 2010; Thiele et al. 2013; Lei et al. 2014), are con-
sistent across the genome. We show that despite an overall
congruence, there are small regions of introgression, a
proportion of which is between C. sibreei and C. sp. cf.
medius, two species with the most similar hibernation pro-
files. Since dwarf lemurs are the only obligate hibernating
primates, and hibernation is thought to be ancestral (Blanco
et al. 2018), we tested if genes associated with the hiber-
nation phenotype are present in introgressed regions of the
genome. We find evidence that genes implicated in the
control of circadian rhythm and feeding regulation (such as
NPY2R and HCRTR2) have introgressed between species
of dwarf lemur.

Together, this work offers the largest contribution of novel
genomic resources for any study to date of Madagascar’s
lemurs. These data allow us to better understand con-
temporary levels of diversity in isolated populations and the
demographic history of Cheirogaleus. Our approach repre-
sents a concerted effort to utilize genomic data for the pur-
poses of formulating hypotheses of conservation threat and to
better understand the evolutionary history of this unique clade
of primates, as well as future prospects for its survival.

Methods

Genome sequencing and assembly

To allow us to compare inter-clade diversity on a genomic
scale, we first generated a reference genome from a Duke
Lemur Centre Cheirogaleus medius individual, DLC-
3619F, which died of natural causes. DNA was extracted

from liver tissue, and shotgun and Chicago libraries pre-
pared by Dovetail Genomics. Each library was sequenced
on two lanes of Illumina HiSeq 4000 at Duke Sequencing
Core (2 × 150-bp reads; Supplemental Table 1). A de novo
assembly was constructed using a Dovetail’s Meraculous
assembler, and the HiRise software pipeline was used to
scaffold the assembly (Putnam et al. 2016). Adaptors were
removed using TRIMMOMATIC (Bolger et al. 2014),
which also discarded reads <23 bp and q < 20. We assessed
the completeness of the assembly using standard summary
statistics (e.g. number of scaffolds and scaffold N50) and
the presence of orthologous genes sequences (BUSCO
pipeline; v3; Waterhouse et al. 2017).

To facilitate tests of phylogenetic relationships across the
genome, estimate demographic history, and measure genetic
diversity, we sampled four wild-caught dwarf lemurs, one
each from the species Cheirogaleus sp. cf. medius, C.
major, C. crossleyi, and C. sibreei. Our aim was to include
one sample from each of the four primary clades found
within Cheirogaleus (Groeneveld et al. 2010). Individuals
were live trapped (sampling locations shown in Fig. 1a), ear
clips taken, and the animals released. C. sp. cf. medius was
sampled from a population in Tsihomanaomby, a forest in
the north-east of Madagascar outside of the known C.
medius range, and where C. sp. cf. medius, C. major, and C.
crossleyi are found in sympatry. Samples from the C. sp. cf.
medius population in Tsihomanaomby are distinct from C.
medius in mtDNA (Fig. 1b) and morphology (Groeneveld
et al. 2009). This lineage warrants further investigation and
is here referred to as C. sp. cf. medius, but was not sampled
in the taxonomic revision of Cheirogaleus by Lei et al.
(2014). The C. major individual was sampled from Mar-
ojejy National Park, a rainforest ~45 km from the C. sp. cf.
medius sampling site, which C. crossleyi and C. sibreei also
inhabit, though the latter is only found at elevations above
1500 m. Sampling sites for C. sp. cf. medius and C. major
are separated by ~45 km. We sampled C. crossleyi from
Andasivodihazo, Tsinjoarivo (where C. crossleyi and C.
sibreei occur sympatrically) and C. sibreei from Anka-
divory, Tsinjoarivo. Andasivodihazo and Ankadivory
sampling sites are separated by ~6 km but are part of the
same continuous forest (Fig. 1a).

DNA was extracted using DNeasy (C. sibreei) or
MagAttract (remaining samples) kits. One library was pre-
pared per individual and barcoded libraries were then
pooled prior to sequencing. Sequences were generated using
the Illumina HiSeq 4000 machine at Duke Sequencing Core
(2 × 150-bp reads), and read quality was assessed using
FASTQC and then filtered using TRIMMOMATIC. Reads < 50 bp
were discarded after trimming for quality (q < 21, leading:
20, trailing: 20). Expected genome size for each of the four
species we sampled was estimated using JELLYFISH (Marçais
and Kingsford 2011) and FINDGSE (Sun et al. 2018). Reads
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Fig. 1 Geographic distributions and phylogenetic relationships of
Cheirogaleus. a Map of Madagascar showing the sampling locations
and IUCN Red List distributions of the four study species. Green star
shows sampling location of outgroup Microcebus griseorufus. b
Maximum likelihood estimation showing relationships within Cheir-
ogaleus based on 684-bp cytochrome c oxidase subunit II (COII).
Individuals used here in genomic analyses are indicated by their

species colour. Comparative taxa were taken from the National Center
for Biotechnology Information (NCBI) online database. Locations for
these comparative samples were taken from NCBI or, if unlisted, their
publication. Bootstrap values shown. c Cheirogaleus illustrations,
copyright 2013 Stephen D. Nash/IUCN SSC Primate Specialist Group;
used with permission
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were aligned to the C. medius reference genome using
BWA mem (Li and Durbin 2009) with default settings. Bam
files were produced using SAMTOOLS (Li et al. 2009) and
duplicates were marked using PICARD (Broad Institute 2018,
accessed 2018). Reads were then realigned around indels
using GATK’s ‘RealignerTargetCreator’ and ‘IndelRea-
ligner’ tools (Mckenna et al. 2010; Depristo et al. 2011).
We then genotyped each individual at SNPs mapping to
scaffolds >100 kb (99.6% of the assembly). Individual .gvcf
files were first generated for each individual using GATK’s
‘HaplotypeCaller’ tool. Joint genotyping was then carried
out for all samples using GATK’s ‘GenotypeGVCFs’ tool.
The final set of variants were filtered based on GATK Best
Practices (Van der Auwera et al. 2013). One Microcebus
griseorufus individual (RMR66), sampled from Beza
Mahafaly Reserve, was sequenced as ~400-bp insert
libraries on an Illumina HiSeq 3000 (2 × 150-bp reads) to
~40× and included in the pipeline described above so that it
could be used as an outgroup.

Phylogenetic relationships

To investigate species boundaries between our samples, we
first confirmed the species assignment of our individuals
using mtDNA barcoding. We used cytochrome c oxidase
subunit II (COII) sequencing and NCBI Genbank to access
a subset of COII sequences from across the Cheirogaleus
clade. In addition, we used BLAST+ 2.7.1 (Altschul et al.
1990) to extract the COII sequences from our genome-wide
Cheirogaleus data. Sequences were aligned using MAFFT

v7.017 (Katoh et al. 2002), totalling 54 sequences with 684
nucleotide sites. We estimated a maximum likelihood (ML)
phylogenetic tree for the aligned sequences using Mod-
elFinder (Kalyaanamoorthy et al. 2017), as implemented in
IQ-TREE v.1.6.6 (Nguyen et al. 2015), to assess relative
model fit. The phylogeny was rooted on the outgroup
Microcebus griseorufus and significance was assessed using
500,000 ultrafast bootstrap replicates (Hoang et al. 2018).

To assess variation in relationships among species across
the genome, we used SAGUARO (Zamani et al. 2013).
SAGUARO generates similarity matrices for each region that
represents a new relationship, therefore creating statistical
local phylogenies for each region of the genome. We used
105,461,324 SNPs, averaging approximately four SNPs per
100 bp. Our final set of variants for the four ingroup species
was run in SAGUARO using default iterations. We visualised
the distribution of relationships across the genome in R (R
Core Team 2019), plotting phylogenetic relationships as
neighbour joining trees. Topologies that do not agree with
the previously accepted taxonomic relationships within the
genus (e.g. Thiele et al. 2013; Lei et al. 2014) are from here
termed ‘discordant’ trees. Since the C. medius reference
genome is not annotated, we identified genes in discordant

regions by using BLAST+ to infer gene function from
homologous genes from the grey mouse lemur (Microcebus
murinus) NCBI protein database (Larsen et al. 2017). M.
murinus is the highest quality genome assembly available
within the sister clade to Cheirogaleus, and is ~27My
divergent (Dos Reis et al. 2018).

Test for independence

Because SAGUARO identified a small number of discordant
genomic regions, we next carried out formal tests for
admixture between taxa using Patterson’s D-statistics
(Green et al. 2010b; Durand et al. 2011), as implemented in
ANGSD (Korneliussen et al. 2014). We ran two tests; the first
test was based on discordant relationships identified in the
SAGUARO analyses, and looked for admixture between C.
crossleyi, C. major, and C. sp. cf. medius, using C. sibreei
as the outgroup (O), given the relationship (((P1, P2), P3), O).
The second test looked for introgression between C. sp. cf.
medius (P2) and C. sibreei (P3) with outgroup Microcebus
griseorufus, and using either C. crossleyi or C. major as P1
(allowing us to test for introgression between different
combinations of species).

Patterson’s D gives a genome-wide estimate of admix-
ture and was not designed to quantify introgression at
specific loci (Martin et al. 2015). To identify specific
regions of admixture, we used fd (Martin et al. 2015), which
provides a point estimate of the admixture proportion at a
locus, allowing for bidirectional introgression on a site-by-
site basis. We ran fd on combinations that had returned a
significant Patterson’s D, first between C. sp. cf. medius and
C. major (C. med/C. maj), and secondly between C. sp. cf.
medius and C. sibreei (C. med/C. sib). We used 40-kb
windows with a 10-kb step size.

We defined candidate regions of introgression as those
that fell into the top 0.05% of the genome-wide distribution
of fd. These ‘significant’ regions were extracted and BED-

TOOLS (Quinlan and Hall 2010) was used to merge over-
lapping windows. Windows that overran the length of a
scaffold were corrected, reducing the regions of interest
from 2.25 to 2.24Mb. Scaffolds containing windows with
significant fd were filtered for coverage, identifying sites
higher than twice the mean, and lower than half the mean
coverage in order to match MSMC2 analyses. This mean
was averaged across samples on a per site basis. Windows
were masked if more than 30% of the sites within a window
did not meet filtering criteria.

Given that the hibernation phenotype is thought to be
ancestral for the dwarf lemur clade (Blanco et al. 2018), we
set out to test the hypothesis that genes associated with
hibernation were present in introgressed regions. Genes
present in introgressed regions were identified from the M.
murinus protein database using tblastn, and filtered by

Conservation genomic analysis reveals ancient introgression and declining levels of genetic diversity. . .



evalue(0.0001), max_hsps(1), and max_target_seqs(20).
Results were parsed by bit score, and then evalue to retain
only unique RefSeqIDs. Genes associated with metabolic
switches before and during hibernation were pulled from the
hibernation literature (Faherty et al. 2016, 2018; Grabek
et al. 2017) that we refer to as hibernation-associated genes.
These genes were chosen from the literature on small
hibernating mammals and included all gene expression
work in Cheirogaleus. Ensembl biomaRt (Durinck et al.
2005, 2009) was used to convert between different terms of
reference. The hibernation-associated genes were cross-
referenced with genes identified in windows that contained
significant fd. To identify over-represented biological path-
ways of introgressed genes, we ran gene ontology (GO)
enrichment analysis using the R/bioconductor package
goseq v.1.32.0 (Young et al. 2010).

Age of introgression

To assess the timing of introgression, we used the software
HYBRIDCHECK v1.0 (Ward and Van Oosterhout 2016).
HYBRIDCHECK differs from fd by using spatial patterns in
sequence similarity between three sequences, as opposed to
taking phylogeny into account by using a fourth sequence
as the outgroup. In addition, the analysis does not use pre-
defined windows. As input for HYBRIDCHECK, we created
full-sequence fasta files for each individual. To do so, we
first ran GATK v3.8 FastaAlternateReferenceMaker for
each individual, replacing bases in the C. medius reference
genome that were called as non-reference alleles for that
individual, using the unfiltered VCF file (see genotyping,
above). Next, the following classes of bases were masked:
(1) non-reference bases that did not pass filtering (DP < 5,
DP > 2 × mean-DP, qual > 30, QD < 2, FS > 60, MQ > 40,
MQRankSum <−12.5, ReadPosRankSum <−8, ABHet <
0.2 or > 0.8); (2) sites that were classified as non-callable
using GATK v3.8 CallableLoci (using a minimum DP of 3).
HYBRIDCHECK was run for all scaffolds larger than 100 kb
using default settings, testing all possible triplets for the
four Cheirogaleus species. We only retained blocks that
contained at least ten SNPs and had a p-value <1 × 10−6.
Blocks identified between sister species in any given triplet
were removed to reduce the chance of identifying blocks
due to incomplete lineage sorting. Estimated dates for
introgressed blocks were converted using a per-year muta-
tion rate of 0.2 × 10−8, based on a per-generation mutation
rate of 0.8 × 10−8 (Yoder et al. 2016). This mutation rate is
currently the most accurate estimate available, calculated for
mouse lemurs (Microcebus murinus) from average esti-
mates between humans and mice. As the phylogenetically
closest estimate for dwarf lemurs, this was used throughout
the analyses. We checked for overlap between regions
identified using fd and those identified using HYBRIDCHECK.

Historical and contemporary effective population
size

To estimate how Ne has varied through time, for each
species, we estimated Ne using the software MSMC2 (Schif-
fels and Durbin 2014; Malaspinas et al. 2016). Due to only
sequencing one individual per species, we ran each species
as a single population of n= 1 (with a single individual per
species, we could not run MSMC2 to estimate cross-
coalescence rates between populations). For this analysis,
we included scaffolds larger than 10Mb, using a total of
52 scaffolds, comprising ~2 Gb and 89.23% of the genome
assembly (total assembly is 2.2 Gb). SAMTOOLS and a custom
script from the MSMC tools repository were used to generate
input files per scaffold: a VCF and a mask file to indicate
regions of sufficient coverage. In addition, a mappability
mask was generated using SNPABLE REGIONS (Li 2009), pro-
viding all regions on which short sequencing reads could be
uniquely mapped. To run MSMC2, we used ‘1 × 2+ 30 × 1+
1 × 2+ 1 × 3’ to define the time segment patterning.
Coalescent-scaled units were converted to biological units
using a generation time of 4 years and a per-generation
mutation rate of 0.8 × 10−8. To estimate uncertainty in
estimates of Ne, we performed 50 bootstrap replicates. We
calculated the harmonic mean of the Ne for each individual,
excluding both the first five and the last five time segments.

To study contemporary patterns of genetic diversity, we
ran a sliding window analysis in 100-kb windows across the
genomes. As a measure of heterozygosity, we identified
total heterozygous sites per window, and sites with missing
genotype calls in one or more species. We then divided the
number of heterozygous sites by the window size minus the
number of missing genotype calls. We note that this mea-
sure differs from heterozygosity in the population-genetic
sense (H= 2 pq), but is still a useful summary of the genetic
variation contained within the populations from which our
samples were collected.

Results

Genome assembly and sequencing statistics

The final assembly of the dovetail-generated reference
genome for Cheirogaleus medius, based on ~110 × cover-
age, comprised 191 scaffolds >100 kb and had a scaffold
N50 of 50.63Mb. The genome contained 92.7% complete
single-copy BUSCO orthologs, 3.4% were fragmented, and
3.2% were missing. For the four wild-caught individuals,
Illumina sequencing produced 350.4 Gb of raw data, total-
ing 1,511,287,743 paired-end reads and representing ~30 ×
coverage per individual. After quality filtering,
1,444,867,212 (97%) high quality reads were retained
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(82.1% paired, 12.6% forward, 1.7% reverse) and mapped
to the C. medius reference genome. Genome size was
estimated to be 2.4 Gb for C. sp. cf. medius, 2.6 Gb for both
C. major and C. crossleyi, and 2.5 Gb for C. sibreei.

Phylogenetic relationships

ModelFinder within IQ-TREE selected model TIM2+F+G4
for the ML analyses based on the Bayesian information
criterion and corroborated the overall topology as pre-
viously published, confirming the clade-level assignment of
the samples we use for re-sequencing in this study (Fig. 1b).
The C. sp. cf. medius individual phylogenetically groups
with individuals identified as C. medius using mitochondrial
DNA (Fig. 1b), and this specific sub-clade of C. medius was

not sampled by Lei et al. (2014). Our C. major individual
phylogenetically groups into the ‘major C clade’ of Lei
et al. (2014), and C. crossleyi phylogenetically groups with
the ‘crossleyi B clade’ of Lei et al. (2014). C. sibreei
remains a single species.

The mitochondrial sequences for the four individuals of
C. sp. cf. medius, C. major, C. crossleyi, and C. sibreei used
in this study are highly divergent, with species separated in
well-defined clades. By using a phylogenomic approach, we
were able to confirm the relationships identified using
mitochondrial data at a genome-wide scale. To do this, we
used SAGUARO to identify the most common relationships
among C. sp. cf. medius, major, crossleyi, and sibreei (the
C. medius reference genome was not included in subsequent
analyses due to admixed ancestry) (Williams et al.,
unpublished data). SAGUARO identified 16 unique relation-
ships across the genomes (Fig. 2). We concatenated results
that showed the same topology, and from these remaining
distance matrices, seven (99.4% of the genome) recapitulate
phylogenetic relationships identified using mtDNA. Thus,
the vast majority of genomic regions support previously
published relationships among dwarf lemur species, which
were mostly based on mitchondrial data and morphological
comparisons (Groeneveld et al. 2009, 2010; Thiele et al.
2013; Lei et al. 2014). Our SAGUARO results indicate that C.
major and C. crossleyi are genomically most similar to each
other (sister species cannot be formally inferred with this
method, as trees are unrooted), and equally distant from C.
sp. cf. medius. C. sibreei shows the greatest divergence
within the clade, which is in agreement with previous
phylogenetic studies. These results thus provide the first
genome-wide support for four distinct species of
Cheirogaleus.

Additional topologies identified by SAGUARO (Fig. 2)
illustrate variation in local phylogenetic relationships across
the genome. Therefore, despite the overall support for the
species tree, local variation in phylogenetic signal might be
driven by evolutionary processes such as variation in
mutation rate, incomplete lineage sorting, or introgression.
For example, SAGUARO identified seven discordant topolo-
gies of which two, spanning 3Mb of the genome in total,
show a close relationship among C. major and C. sp. cf.
medius. Two trees show a topology in which C. sibreei and
C. sp. cf. medius were more closely related (657 kb of the
genome), and three trees grouped C. crossleyi and C. sp. cf.
medius as more closely related (2.4 Mb of the genome).
SAGUARO is not forced to assign genomic regions to all
hypotheses and so two of the 16 relationships were not
assigned to regions of the genome. Genes present in dis-
cordant regions were identified using tblastn, resulting in a
total of 30 unique genes (Supplementary Table 3).

2205.3 99.53

2.3 0.1Yes

1.7 0.08

1.4 0.06

0.8 0.04

0.6 0.03

0.2 0.01

0.1 0.006

Combined 
region 

length (mb)

% of 
genome

Discordant? Phylogeny

Yes

Yes

Yes

Yes

Yes

Yes

No

Fig. 2 The relationships assigned to regions of the genome that were
identified in the SAGUARO analyses. Discordance to previously
published phylogenies indicated. Phylogenies are neighbour joining
trees generated from the distance matrices. Phylogenies with the same
overall relationships have been concatenated. Colours represent spe-
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Signals of ancient introgression

To test if discordant trees were a result of admixture
between species, as opposed to incomplete lineage sorting,
we used Patterson’s D-statistics. When testing for intro-
gression between C. sp. cf. medius with either C. crossleyi
or C. major, we found a genome-wide excess of ABBA
sites, giving a significantly positive Patterson’s D of
0.014 ± 0.0008 (Z score 16.94) between C. sp. cf. medius
and C. major, thus providing evidence for admixture
between C. major and C. sp. cf. medius. This result is also
in agreement with the most common discordant topology
identified in the SAGUARO analysis summarized above. When

testing for introgression between C. sp. cf. medius and C.
sibreei, we again found a genome-wide excess of ABBA
sites. With C. crossleyi as P1, there was a significantly
positive Patterson’s D of 0.06 ± 0.001 (Z score 54.37). With
C. major as P1, there was a significantly positive Patter-
son’s D of 0.06 ± 0.01 (Z score 53.89). Both results are
evidence for introgression between C. sp. cf. medius and C.
sibreei.

To identify specific regions of admixture, we used the fd
statistic (Martin et al. 2015; Fig. 3). We calculated fd for
comparisons that had significant genome-wide estimates of
Patterson’s D: between C. sp. cf. medius and C. major (C.
med/C. maj), and between C. sp. cf. medius and C. sibreei

Fig. 3 Fd test for introgression plotted across the genome. Fd statistic
computed in 40-kb windows with a 10-kb sliding window, with the
full phylogeny and associated test indicated on the right. Scaffolds are
arranged from largest to smallest, alternating in colour. ‘Significant
regions' are shown in red. Hibernation-related genes are labelled. a

Results from a test of introgression between Cheirogaleus sp. cf.
medius and C. major (C. med/C. maj). b Results from a test of
introgression between C. sp. cf. medius and C. sibreei (C. med/C. sib).
c Isolated scaffolds of interest
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(C. med/ C. sib). We define a region as being introgressed if
fd was in the top 0.05% of the genome-wide distribution.
The C. med/C. maj test (Fig. 3a) resulted in an average of
1903 biallelic SNPs per window, a mean fd of 0.0008 and a
0.05% cutoff of 0.137. There were 21 scaffolds containing
one or more regions of significant fd. The scaffold with the
highest average fd was ScMzzfj_1392_HRSCAF_67928
(fd= 0.01). The C. med/C. sib test (Fig. 3b) averaged 3005
biallelic SNPs per window, with an average fd of 0.01 and a
0.05% cutoff of 0.188. There were 23 scaffolds with regions
of one or more significant fd window, and scaffold
ScMzzfj_2194_HRSCAF_93304 had the highest average
(fd= 0.07).

We next used HYBRIDCHECK to estimate the date of the
introgression within the clade (Fig. 4). The average age of
introgressed regions across all species pairs was 4.12My,
and the average length of introgressed regions was 2.2 kb
(Table 1), showing that introgression was predominantly
ancient. The lower boundary estimate of the most recent
split within the Cheirogaleus clade is ~6Mya (identified in
Dos Reis et al. (2018) between C. medius and C. major) and
therefore approaches, but does not overlap with, our oldest

average estimate of admixture, which is between C. major
and C. sibreei and dated 4.52Mya. Following the removal
of sister species in any given triplet, the number of intro-
gressed regions were calculated between pairs from any
given triplet. The largest number of introgressed regions
(totaling 9553) were detected between C. sp. cf. medius and
C. sibreei, generated from testing triplet ‘'med/cro/sib'’ and
‘med/maj/sib’. These values were followed by regions
detected between C. sp. cf. medius and C. major (4959).
These results corroborate our fd findings. Calculating the
overlap between fd and HYBRIDCHECK blocks for C. med/C.
maj showed that 8 of the 86 fd blocks overlap with the 4959
HYBRIDCHECK blocks to create a total of 12 discrete over-
lapping sections. For C. med/C. sib, 26 of the 101 fd blocks
overlap with the 9553 HYBRIDCHECK blocks to create a total
of 130 discrete overlapping sections. The larger number of
blocks identified by HYBRIDCHECK, compared with fd stat, is
likely due to the fact that HYBRIDCHECK may incorrectly
identify small regions of incomplete lineage sorting as
introgressions.

Genes within introgressed regions

Parsed RefSeq ID BLAST results were filtered by bit score
and evalue, resulting in 4668 hits, containing 660 genes for
C. med/C. maj and 4605 hits, containing 676 genes, for C.
med/C. sib. However, hibernation genes were not more
likely to be in introgressed regions that we would expect by
chance for the C. med/C. maj test, in fact there was a slight
deficit of hibernation genes in introgressed regions, relative
to the total number of hibernation genes (χ2= 5.55, df= 1,
p= 0.018). Nonetheless, introgressed regions for between
C. medius and C. major contained 3% of all hibernation
genes (21 unique genes; Supplementary Table 3). The C.
med/C. sib test also did not contain more hibernation genes
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Table 1 Tract sizes and estimated dates of introgression

C. sp. cf.
medius

C. major C. crossleyi C. sibreei

C. sp. cf.
medius

– 2774 2408 1931

C. major 4,280,308 – – 2240

C. crossleyi 3,941,566 – – 2116

C. sibreei 3,945,108 4,519,688 4,135,655 –

The mean size of introgressed regions in base pairs is shown above the
diagonal and the estimated mean age of introgressed regions in years
below the diagonal
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than expected by chance (χ2= 3.11, df= 1, p= 0.078) and
introgressed regions here contained 3.6% of total hiberna-
tion genes (25 unique genes; Supplementary Table 3).
Results do not account for the fact that genes may be non-
randomly clustered because annotations are not yet avail-
able for the full genome.

GO analyses did detect 30 and 32 GO categories that
were significantly over-represented in the introgressed
regions (p < 0.00006, p < 0.00009) in the C. med/C. maj and
C. med/C. sib tests, respectively (Supplementary Table 4).
Among the significantly over-represented GO categories
were a large proportion of categories related to transcrip-
tional activity, which is a critical component for inducing
the hibernation phenotype (Morin and Storey 2009).
Moreover, several genes that appear to have introgressed
between C. medius and C. sibreei are more directly relevant
to hibernation (Fig. 3c). These include genes relating to
circadian rhythm, the regulation of feeding (NPY2R; Soscia
and Harrington 2005), (HCRTR2; Kilduff and Peyron
2000)), and macrophage lipid homoeostasis (ABCA10;
Wenzel et al. 2003).

Historical and contemporary effective population
size

To understand how historical demographic events have
influenced effective population size (Ne) through time, we
reconstructed the demographic history of each species based
on a multiple sequentially Markovian coalescent model
(Fig. 5a). From our results, we infer that Cheirogaleus sp.
cf. medius has seen two expansions in Ne in the last 2
million years, followed by a decline at ~300 kya, with an
overall harmonic Ne mean of 92,285 individuals. Cheir-
ogaleus major shows an initial peak over two million years
ago, followed by a decline and then a more moderate Ne

throughout the last 200 ky, averaging overall Ne as 98,005.
This trajectory is very similar to that shown by Cheir-
ogaleus sibreei, which shows the most stable Ne of the
Cheirogaleus species tested and a relatively high harmonic
mean of 103,630. Finally, C. crossleyi shows a relatively
large increase in Ne to almost 200 k; this change occurs at a
similar time that we see the decline in C. sp. cf. medius.
Contemporary heterozygosity is consistent with the MSMC2
results and allows us to infer that the C. sp. cf. medius
population has not recovered from the decline 300 kya (Fig.
5a). Similarly, the effects of a large increase in Ne seen in C.
crossleyi are still evident today; the harmonic mean estimate
is the highest of the four species, at 108,229 individuals.

We next quantified heterozygosity for each individual in
our data set to test whether long-term population size is
correlated with contemporary levels of genetic diversity.
We assessed levels of heterozygosity in sliding windows
across the genome. The C. sp. cf. medius individual inclu-
ded in our study has markedly lower heterozygosity than the
other three species (genome-wide average= 0.001 versus
0.003, 0.003, and 0.004; Fig. 5a), while C. major and C.
sibreei both show immediate levels of current hetero-
zygosity (both average 0.003; Fig. 5b). C. crossleyi appears
to have had a much larger Ne for ~150 ky, and this is
reflected in it having the highest level of genome-wide
heterozygosity (0.004).

Discussion

Our study not only confirms relationships between Mada-
gascar’s rarely seen nocturnal hibernators, but also identifies
ancient introgression that has occurred between species. By
utilizing a combination of whole genome sequencing,
Markovian coalescent approaches, and phylogenomic ana-
lyses of four species of Cheirogaleus, we have been able to
examine the demographic history of dwarf lemurs in greater
resolution than has yet been attempted. We confirmed
previously hypothesized phylogenetic relationships among
four species within the genus, calculated heterozygosity
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levels, and assessed historical effective population sizes,
thereby using different measures of diversity to assess
conservation needs. Surprisingly, these analyses also iden-
tified regions of introgression among species that contained
several significantly over-represented GO categories.

Functional implications of ancient admixture for the
hibernation phenotype

We identified regions of admixture between C. sp. cf.
medius and two other species, C. major and C. sibreei.
Contemporary or even relatively recent gene flow between
C. medius and C. major would seem unlikely given the long
divergence time (Dos Reis et al. 2018), current morpholo-
gical differences (including a threefold difference in
weight), and the disjunct geographic ranges (dry western
forest versus eastern tropical rainforest) of C. medius and C.
major (Goodman and Benstead 2003; IUCN area of occu-
pancy distributions shown in Fig. 1a). However, the C. sp.
cf. medius individual characterized by this study was sam-
pled from Tsihomanaomby, a forest outside of the typical
range of the species where it occurs sympatrically with a
population of C. major. As would be expected given the age
of lineage diversification, these introgressed tracts are much
smaller than the more recently admixed human genome,
where introgressed haplotypes average 50 kb (Sankarara-
man et al. 2016; Browning et al. 2018). Both the small tract
lengths (on average 2.2 kb) and estimates of admixture
timing based on sequence divergence indicate that admix-
ture between the species was ancient. Specifically, estimates
of the timing of admixture suggests that admixture occurred
not long after divergence of the species (Dos Reis et al.
2018).

Building on these estimations of ancient admixture,
introgression between Cheirogaleus medius and C. sibreei
may have more biological relevance for understanding their
life history. They are the two ‘super hibernators’ in the
clade and have similar hibernation profiles relative to the
other two species, consistently showing the longest duration
of torpor (Blanco et al. 2016, 2018). Both species hibernate
for the longest periods of time (up to 7 months of the year)
and in the more extreme environments: C. medius can
hibernate under extreme fluctuations in daily ambient tem-
peratures up to 35 °C, whereas C. sibreei is a high elevation
species that hibernates in the coldest habitats of Mada-
gascar, with an average body temperature of 15 °C (Blanco
et al. 2018). They are not sister species, and are estimated to
have diverged from the most recent common ancestor
18Mya (Dos Reis et al. 2018). Hibernation within the clade
is hypothesized to be ancestral (Blanco et al. 2018), there-
fore, the adaptive introgression of genes relating to hiber-
nation is plausible but would have required a strong
selective advantage for these regions in the recipient

population. Confirmation of adaptive introgression would
require additional evidence, such as population-level data
showing evidence for a sweep of the introgressed allele
(Arnold et al. 2016). The significant GO categories relating
to transcriptional activity are particularly interesting
because of the transcriptional control mandatory for initi-
ating and maintaining the hibernation phenotype. Entry into
torpor requires coordinated controls that suppress and rep-
rioritize all metabolic functions including transcription
(Morin and Storey 2009).

We found several genes associated with circadian
rhythms to be located in introgressed regions. Gene
HCRTR2 plays a role in the regulation of feeding and sleep/
wakefulness (Kilduff and Peyron 2000) and was located in
both tests (C. med/C. maj and C. med/C. sib). NPY2R is a
gene that was identified to be upregulated in the fat versus
torpor phases of Faherty et al. (2018); NPY2R was identified
in an introgressed region between C. med/C. sib. Circadian
clocks play an important role in the timing of mechanisms
that regulate hibernation (Hut et al. 2014), as does the cir-
cannual clock with its impact on seasonal timing (Helm
et al. 2013). The role of the circadian rhythm through the
duration of hibernation in mammals is unclear, with arctic
ground squirrels (Urocitellus parryii) showing inhibition of
circadian clock function during hibernation (Williams et al.
2017). Neuropeptide Y has been shown to modulate
mammalian circadian rhythms (Soscia and Harrington
2005) and there has been interest in its potential for anti-
obesity drug development (Yulyaningsih et al. 2011) due to
increased expression exerting anorexigenic effects (Yi et al.
2018). Thus, the upregulation of NPY2R during the process
of hibernation and the highly conserved nature of the Y2
receptor warrants further investigation for its application to
human medicine. Also of interest, ABCA10 was identified in
Faherty et al. (2016) to be differentially expressed between
‘active1’ and ‘torpor’ states (‘active1’ represents the accu-
mulation of weight during the summer months). This gene
is shown to be present in introgressed regions in the C. med/
C. sib test. ABCA10 plays a role in macrophage lipid
homoeostasis (Wenzel et al. 2003). Body fat reserves are
essential to enter hibernation and are then metabolised and
depleted throughout the season (Blanco et al. 2018). As
longer hibernators, C. medius and C. sibreei would be
expected to need greater control over fat metabolism.

Climatic impacts on population size through time
and prospects for the future

Madagascar’s history of climatic variation has shaped the
fauna of the island (Dewar and Richard 2007). Fluctuation
of climate such as lower temperatures at the
Eocene–Oligocene transition (Dupont-Nivet et al. 2007),
followed by warming climate and low precipitation of the
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Miocene, caused dramatic contractions and expansions of
vegetation (Hannah et al. 2008). Climatic variation has been
incorporated into models that try to explain the micro-
endemism and historical patterns of dispersal and vicariance
across the island (Wilmé et al. 2014). Martin (1972) posited
a model that considered larger rivers as geographical barriers
to gene flow, suggesting that climatically and physically
defined zones can operate as agents for geographical isola-
tion and speciation, such as climatic pulsing. Wilmé et al.
(2006) followed a similar theme looking at watersheds in the
context of quaternary climatic and vegetation shifts, result-
ing in patterns of diversity and microendemism. Craul et al.
(2007) tested the influence of inter-river-systems on simul-
taneously isolating populations and providing retreat zones.

The changes in Ne seen in Fig. 5a fit with Wilmé’s
hypothesis of climatic pulsing. During periods of glaciation,
when the climate was cooler and drier, high-altitude species
were likely buffered from changing conditions, whereas
low-altitude species likely experienced declines associated
with aridification and greater levels of habitat isolation, and
may have expanded during glacial minima, when climatic
conditions were warmer and more humid. The finding of a
more stable Ne through time for C. sibreei, the high plateau
specialist, supports the theory that populations at high alti-
tudes avoided the expansions and contractions occurring at
lower elevations. Results for species typically found at
lower elevations show more variation, e.g. a decrease in C.
sp. cf. medius Ne occurs simultaneously with an increase in
C. crossleyi Ne. The inference of demographic history is
strongly influenced by population structure and changes in
connectivity (Hawks 2017; Song et al. 2017), and so we are
careful to discuss overall trends and not specifics. Results
show an overall decline for all species in the last 50 k years.
Declines in more recent times are echoed in great apes,
including modern humans (Prado-martinez et al. 2013).
While extremes at either end of the time scale in
MSMC2 should be taken with caution (Hawks 2017), it
appears that certain dwarf lemur populations have been
declining for as long as 300 ky. Furthermore, these declines
are well supported by the bootstrap values, particularly in
the case of C. sp. cf. medius.

Our results indicate that population declines of dwarf
lemurs occurred long before the arrival of humans, intro-
ducing the possibility of long-term low Ne. As these are all
species of conservation concern, we assessed genomic
levels of heterozygosity to derive an estimate of genetic
diversity. C. sp. cf. medius had the lowest overall hetero-
zygosity of the samples here examined, and these values are
indicative of a small and isolated population at risk of
inbreeding depression (Rogers and Slatkin 2017). The C.
sp. cf. medius individual examined here was collected from
Tsihomanaomby in the north-east of Madagascar. This is a

sub-humid rainforest site (~7 km2) not typical to the C.
medius habitat preference given that the species is normally
associated with the dry forests of the west (Groves 2000;
Hapke et al. 2005; Groeneveld et al. 2010, 2011). Inter-
estingly, our estimates of historic effective population size
trajectory suggest that the Ne of C. sp. cf. medius has long
been much lower than that of other dwarf lemurs (Fig. 5a).
It is therefore possible that the decline in C. sp. cf. medius
Ne seen ~300 kya is the time that this population became
isolated from other C. medius populations, or a consequence
of a bottleneck associated with their colonisation of Tsi-
homanaomby. It is plausible that the Tsihomanaomby
population was founded by individuals from the north west
(from which it now appears separated; Fig. 1b), and that
founder effects are still impacting the present-day popula-
tion, indicated the by low heterozygosity in our C. sp. cf.
medius individual (Fig. 5b).

Summary

Our study illustrates the power of selective sampling and
genomic analysis for identifying populations/species in
need of conservation, given that analyses of whole genomes
allows us to identify historical events detectable in the
genomes of extant individuals. We conclude from our
analyses that the Cheirogaleus sp. cf. medius population
warrants further investigation, both taxonomically, given its
disjunct distribution, and as a species of conservation con-
cern. All four taxa show temporal changes in ancestral Ne

over the last 2 million years with an overall decrease in Ne

in recent years (50 k years). While species may recover
from some fluctuation in population size, large crashes
leave long-term traces in the genome that can be detrimental
to long-term survival of populations (Palkopoulou et al.
2015). We demonstrate that for Cheirogaleus, such events
can be potentially disadvantageous, such as low hetero-
zygosity from population declines, as seen in C. sp. cf.
medius. However, the significant enrichment of several
categories of genes in introgressed regions of the genome,
shown by the GO analysis, demonstrates for the first time a
potential source of novel variation in Cheirogaleus.
Hybridization is a pervasive evolutionary force and can
drive adaptive differentiation between populations (Rune-
mark et al. 2018). We show that ancient admixture may
have been a possible mechanism for adaptive phenotypic
evolution in these species of concern.

Data archiving

Genomic sequences can be found under NCBI BioProject
accession PRJNA523575. BioSample accessions are listed
in Supplementary Table 1.
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