251 research outputs found

    Construcción y control de una maqueta de un ciclotrón electromecánico

    Get PDF
    ¿Es posible acelerar una bola mediante la generación de campos magnéticos? Este proyecto tiene como objetivo diseñar e implementar una maqueta que permita acelerar una bola metálica en un circuito cerrado, inspirado en un ciclotrón. La bola metálica debe acelerarse dentro de un circuito cerrado a partir de buscar disparos óptimos en una bobina. Los disparos se buscarán en función de la velocidad de la bola y de la distancia de esta respecto la bobina. Para simular el sistema utilizamos el programa SIMULINK de MATLAB a partir de las ecuaciones diferencias del sistema y utilizando la función fminsearh para encontrar los disparos óptimos. En las simulaciones comprobamos que era posible encontrar puntos de disparo y acelerar la bola mediante campos magnéticos producidos por un grupo de bobinas. Para llevar esto a la práctica se ha realizado el montaje de una maqueta basándonos en el modelo de un ciclotrón. Decidimos utilizar las bobinas más pequeñas que nos permitieran mover la bola y de esa manera maximizar la importancia de la obtención de los puntos de disparo óptimos. Para implementar el control y probar las simulaciones realizadas decidimos utilizar una placa FLEX que el departamento disponía en ese momento. Esta placa incluye un microprocesador DSPIC con un Kernel en tiempo real. Una vez construida la maqueta y realizada su puesta en marcha más programación del control en la placa FLEX se han determinado los puntos de disparo óptimos y se han obtenido resultados prácticos que confirman las simulaciones realizadas en el inicio del proyecto

    New Clock Comparison Searches for Lorentz and CPT Violation

    Full text link
    We present two new measurements constraining Lorentz and CPT violation using the Xe-129 / He-3 Zeeman maser and atomic hydrogen masers. Experimental investigations of Lorentz and CPT symmetry provide important tests of the framework of the standard model of particle physics and theories of gravity. The two-species Xe-129 / He-3 Zeeman maser bounds violations of CPT and Lorentz symmetry of the neutron at the 10^-31 GeV level. Measurements with atomic hydrogen masers provide a clean limit of CPT and Lorentz symmetry violation of the proton at the 10^-27 GeV level.Comment: 11 pages, 5 figures. To appear in the Proceedings of the 3rd International Symposium on Symmetries in Subatomic Physic

    “As soon as the four sides are all equal, then the angles must be 90° each”: children's misconceptions in geometry

    Get PDF
    This study describes Nigerian and South African students' conceptual understanding in high school geometry based on the van Hiele model of geometric thinking levels. The study further highlights students' misconceptions in school geometry. Concepts of triangles and quadrilaterals were investigated among 36 mathematics learners drawn from grades 10 through 12 who participated in this study. The tasks included identifying and naming shapes, sorting of shapes, stating the properties of shapes, defining of shapes and establishing class inclusions of shapes. The results indicated that many Nigerian and South African high school learners in Grade 10, 11 and 12 hold a number of misconceptions about geometric concepts of triangles and quadrilaterals

    Serendipitous XMM-Newton discovery of a cluster of galaxies at z=0.28

    Get PDF
    We report the discovery of a galaxy cluster serendipitously detected as an extended X-ray source in an offset observation of the group NGC 5044. The cluster redshift, z=0.281, determined from the optical spectrum of the brightest cluster galaxy, agrees with that inferred from the X-ray spectrum using the Fe K alpha complex of the hot ICM (z=0.27 +/- 0.01). Based on the 50 ks XMM observation, we find that within a radius of 383 kpc the cluster has an unabsorbed X-ray flux, f_X (0.5-2 keV) = 3.34 (+0.08, -0.13) x 10^{-13} erg/cm^2/s, a bolometric X-ray luminosity, L_X = 2.21 (+0.34, -0.19) x 10^{44} erg/s, kT = 3.57 +/- 0.12 keV, and metallicity, 0.60 +/- 0.09 solar. The cluster obeys the scaling relations for L_X and T observed at intermediate redshift. The mass derived from an isothermal NFW model fit is, M_vir = 3.89 +/- 0.35 x 10^{14} solar masses, with a concentration parameter, c = 6.7 +/- 0.4, consistent with the range of values expected in the concordance cosmological model for relaxed clusters. The optical properties suggest this could be a ``fossil cluster''.Comment: 5 pages, 4 colour figures, accepted for publication in Ap

    Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh

    Get PDF
    Microbial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the ‘pink berry’ consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1). Using metagenomic sequencing and 34S-enriched sulfate stable isotope probing coupled with nanoSIMS, we demonstrate interspecies transfer of reduced sulfur metabolites from PB-SRB1 to PB-PSB1. The pink berries catalyse net sulfide oxidation and maintain internal sulfide concentrations of 0–500 μm. Sulfide within the berries, captured on silver wires and analysed using secondary ion mass spectrometer, increased in abundance towards the berry interior, while δ34S-sulfide decreased from 6‰ to −31‰ from the exterior to interior of the berry. These values correspond to sulfate–sulfide isotopic fractionations (15–53‰) consistent with either sulfate reduction or a mixture of reductive and oxidative metabolisms. Together this combined metagenomic and high-resolution isotopic analysis demonstrates active sulfur cycling at the microscale within well-structured macroscopic consortia consisting of sulfide-oxidizing anoxygenic phototrophs and sulfate-reducing bacteria

    Self-Assembling Peptide Detergents Stabilize Isolated Photosystem Ion a Dry Surface for an Extended Time

    Get PDF
    We used a class of designed peptide detergents to stabilize photosystem I (PS-I) upon extended drying under N(2) on a gold-coated-Ni-NTA glass surface. PS-I is a chlorophyll-containing membrane protein complex that is the primary reducer of ferredoxin and the electron acceptor of plastocyanin. We isolated the complex from the thylakoids of spinach chloroplasts using a chemical detergent. The chlorophyll molecules associated with the PS-I complex provide an intrinsic steady-state emission spectrum between 650 and 800 nm at −196.15 °C that reflects the organization of the pigment-protein interactions. In the absence of detergents, a large blue shift of the fluorescence maxima from approximately 735 nm to approximately 685 nm indicates a disruption in light-harvesting subunit organization, thus revealing chlorophyll−protein interactions. The commonly used membrane protein-stabilizing detergents, N-dodecyl-β-D-maltoside and N-octyl-β-D-glucoside, only partially stabilized the approximately 735-nm complex with approximately 685-nm spectroscopic shift. However, prior to drying, addition of the peptide detergent acetyl- AAAAAAK at increasing concentration significantly stabilized the PS-I complex. Moreover, in the presence of acetyl- AAAAAAK, the PS-I complex is stable in a dried form at room temperature for at least 3 wk. Another peptide detergent, acetyl-VVVVVVD, also stabilized the complex but to a lesser extent. These observations suggest that the peptide detergents may effectively stabilize membrane proteins in the solid-state. These designed peptide detergents may facilitate the study of diverse types of membrane proteins

    Factor VIII-von Willebrand Factor Complex Inhibits Osteoclastogenesis and Controls Cell Survival

    Get PDF
    Factor VIII-von Willebrand factor (FVIII·vWF) complex, a molecule involved in coagulation, can be physically associated with osteoprotegerin (OPG). OPG is an anti-osteoclastic protein and a soluble receptor for the proapoptotic protein TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), suggesting a potential role of FVIII·vWF complex in bone and cancer biology. We, thus, assessed the effects of FVIII·vWF complex on osteoclastogenesis and cell survival. We first evidenced that FVIII·vWF complex inhibited RANKL-induced osteoclastogenesis and enhanced the inhibitory effect of OPG. Interestingly, we revealed by surface plasmon resonance that FVIII·vWF complex bound to RANKL, whereas recombinant FVIII and vWF did not. By modeling, we showed that the OPG binding domain to the A1 domain of vWF was closely located and partially overlapped to its binding site to RANKL. Then, we demonstrated that FVIII·vWF complex cancelled the inhibitory activity of OPG on TRAIL-induced apoptosis and characterized interactions between these molecules. The present work evidenced a direct activity of FVIII·vWF complex on osteoclasts and on induced cell apoptosis, pointing out its potential involvement in physiological bone remodeling or in bone damages associated with severe hemophilia and cancer development

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
    corecore