44 research outputs found

    Vitamins D2 and D3 Have Overlapping But Different Effects on the Human Immune System Revealed Through Analysis of the Blood Transcriptome

    Get PDF
    Vitamin D is best known for its role in maintaining bone health and calcium homeostasis. However, it also exerts a broad range of extra-skeletal effects on cellular physiology and on the immune system. Vitamins D(2) and D(3) share a high degree of structural similarity. Functional equivalence in their vitamin D-dependent effects on human physiology is usually assumed but has in fact not been well defined experimentally. In this study we seek to redress the gap in knowledge by undertaking an in-depth examination of changes in the human blood transcriptome following supplementation with physiological doses of vitamin D(2) and D(3). Our work extends a previously published randomized placebo-controlled trial that recruited healthy white European and South Asian women who were given 15 µg of vitamin D(2) or D(3) daily over 12 weeks in wintertime in the UK (Nov-Mar) by additionally determining changes in the blood transcriptome over the intervention period using microarrays. An integrated comparison of the results defines both the effect of vitamin D(3) or D(2) on gene expression, and any influence of ethnic background. An important aspect of this analysis was the focus on the changes in expression from baseline to the 12-week endpoint of treatment within each individual, harnessing the longitudinal design of the study. Whilst overlap in the repertoire of differentially expressed genes was present in the D(2) or D(3)-dependent effects identified, most changes were specific to either one vitamin or the other. The data also pointed to the possibility of ethnic differences in the responses. Notably, following vitamin D(3) supplementation, the majority of changes in gene expression reflected a down-regulation in the activity of genes, many encoding pathways of the innate and adaptive immune systems, potentially shifting the immune system to a more tolerogenic status. Surprisingly, gene expression associated with type I and type II interferon activity, critical to the innate response to bacterial and viral infections, differed following supplementation with either vitamin D(2) or vitamin D(3), with only vitamin D(3) having a stimulatory effect. This study suggests that further investigation of the respective physiological roles of vitamin D(2) and vitamin D(3) is warranted

    ARGO-YBJ detector simulation using GEANT4

    Get PDF
    'G4argo', a GEANT4-based simulation package for the ARGO-YBJ detector, is described in this paper. G4argo incorporates in the simulation the true RPC time resolution and another 0.5 ns time uncertainty which is introduced from the offline calibration of TDC. In addition, the correct RPC geometry and the true materials for the ARGO-YBJ experimental hall are implemented. As a result, G4argo simulation shows a very good agreement with real data

    Leprosy at the edge of Europe-Biomolecular, isotopic and osteoarchaeological findings from medieval Ireland

    Get PDF
    Relatively little is known of leprosy in Medieval Ireland; as an island located at the far west of Europe it has the potential to provide interesting insights in relation to the historical epidemiology of the disease. To this end the study focuses on five cases of probable leprosy identified in human skeletal remains excavated from inhumation burials. Three of the individuals derived from the cemetery of St Michael Le Pole, Golden Lane, Dublin, while single examples were also identified from Ardreigh, Co. Kildare, and St Patrick's Church, Armoy, Co. Antrim. The individuals were radiocarbon dated and examined biomolecularly for evidence of either of the causative pathogens, M. leprae or M. lepromatosis. Oxygen and strontium isotopes were measured in tooth enamel and rib samples to determine where the individuals had spent their formative years and to ascertain if they had undertaken any recent migrations. We detected M. leprae DNA in the three Golden Lane cases but not in the probable cases from either Ardreigh Co. Kildare or Armoy, Co. Antrim. M. lepromatosis was not detected in any of the burals. DNA preservation was sufficiently robust to allow genotyping of M. leprae strains in two of the Golden Lane burials, SkCXCV (12-13th century) and SkCCXXX (11-13th century). These strains were found to belong on different lineages of the M. leprae phylogenetic tree, namely branches 3 and 2 respectively. Whole genome sequencing was also attempted on these two isolates with a view to gaining further information but poor genome coverage precluded phylogenetic analysis. Data from the biomolecular study was combined with osteological, isotopic and radiocarbon dating to provide a comprehensive and multidisciplinary study of the Irish cases. Strontium and oxygen isotopic analysis indicate that two of the individuals from Golden Lane (SkCXLVIII (10-11th century) and SkCXCV) were of Scandinavian origin, while SkCCXXX may have spent his childhood in the north of Ireland or central Britain. We propose that the Vikings were responsible for introducing leprosy to Ireland. This work adds to our knowledge of the likely origins of leprosy in Medieval Ireland and will hopefully stimulate further research into the history and spread of this ancient disease across the world.</p

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Lipid metabolism and Type VII secretion systems dominate the genome scale virulence profile of Mycobacterium tuberculosis in human dendritic cells

    Get PDF
    corecore