105 research outputs found

    Study of Two-Step Mechanisms in Pion Absorption on 6Li, 12C via Deuteron Emission

    Full text link
    The (pi+,pd), and (pi+,dd) reactions were investigated with pions of 100 and 165 MeV kinetic energy on 6Li and 12C targets. In comparison with previously published (pi+,pp) data on the same targets and at the same beam energies, kinematic regions were identified in which the neutron pickup process n+p->d dominated the observed deuteron yield. The importance of this mechanism increases with energy, contributing half of the observed cross section at 165 MeV. The contribution of direct quasi-triton absorption is significant only at 100 MeV.Comment: 23 pages, 12 figure

    The thermal limits to life on Earth

    Get PDF
    Living organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above ∌60 °C and most not above 40 °C. The lower thermal limit for growth in bacteria, archaea, unicellular eukaryotes where ice is present appears to be set by vitrification of the cell interior, and lies at ∌−20 °C. Lichens appear to be able to grow down to ∌−10 °C. Higher plants and invertebrates living at high latitudes can survive down to ∌−70 °C, but the lower limit for completion of the life cycle in multicellular organisms appears to be ∌−2 °

    Age-associated changes in the blood brain barrier: Comparative studies in human and mouse

    Get PDF
    Aims: While vascular pathology is a common feature of a range of neurodegenerative diseases, we hypothesised that vascular changes occur in association with normal ageing. Therefore we aimed to characterise age-associated changes in the blood brain barrier (BBB) in human and mouse cohorts. Methods: Immunohistochemistry and Evans Blue assays were used to characterise BBB dysfunction (tight junction protein expression and serum plasma protein accumulation), vascular pathology (pericyte loss and vascular density) and glial pathology (astrocyte and microglial density) in ageing neurological control human pre-frontal cortex (a total of 23 cases from 5 age groups representing the spectrum of young adult to old age: 20-30yrs, 31-45yrs, 46-60yrs, 61-75yrs and 75+) and C57BL/6 mice (3 month, 12 month, 18 month and 24 month, n=5/6 per group). Results: Quantification of the tight junction protein ZO-1 within the cortex and cerebellum of the mouse cohort showed a significant trend to both increased number (cortex p<0.001, cerebellum p<0.001) and length (cortex p<0.001, cerebellum p<0.001) of junctional breaks associated with increasing age. GFAP expression significantly correlated with ageing in the mice (p=0.037). In the human cohort assessment of human protein accumulation (albumin, fibrinogen and human IgG) demonstrated cells morphologically resembling clasmatodendritic astrocytes, indicative of BBB dysfunction. Semi-quantitative assessment of astrogliosis in the cortex expression revealed an association with age (p=0.003), while no age-associated changes in microglial pathology, microvascular density or pericyte coverage were detected. Conclusions: This study demonstrates BBB dysfunction in normal brain ageing, both in human and mouse cohorts

    The IceCube Neutrino Observatory: Instrumentation and Online Systems

    Get PDF
    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review and proofin

    Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard

    Get PDF
    The diversity of highly active bacterial communities in cryoconite holes on three Arctic glaciers in Svalbard was investigated using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA locus. Construction and sequencing of clone libraries allowed several members of these communities to be identified, with Proteobacteria being the dominant one, followed by Cyanobacteria and Bacteroidetes. T-RFLP data revealed significantly different communities in holes on the (cold) valley glacier Austre BrĂžggerbreen relative to two adjacent (polythermal) valley glaciers, Midtre LovĂ©nbreen and Vestre BrĂžggerbreen. These population compositions correlate with differences in organic matter content, temperature and the metabolic activity of microbial communities concerned. No within-glacier spatial patterns were observed in the communities identified over the 2-year period and with the 1 km-spaced sampling. We infer that surface hydrology is an important factor in the development of cryoconite bacterial communities

    FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila

    Get PDF
    Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in signaling environmental information to developmental processes

    Hymenoptera of Canada

    Get PDF
    A summary of the numbers of species of the 83 families of Hymenoptera recorded in Canada is provided. In total, 8757 described species are recorded compared to approximately 6000 in 1979, which is a 46% increase. Of the families recognized in 1979, three have been newly recorded to Canada since the previous survey: Anaxyelidae (Anaxyleoidea), Liopteridae (Cynipoidea), and Mymarommatidae (Mymarommatoidea). More than 18,400 BINs of Canadian Hymenoptera are available in the Barcode of Life Data Systems (Ratnasingham and Hebert 2007) implying that nearly 9650 undescribed or unrecorded species of Hymenoptera may be present in Canada (and more than 10,300 when taking into account additional species that have not been DNA barcoded). The estimated number of unrecorded species is very similar to that of 1979 (10,637 species), but the percentage of the fauna described/recorded has increased from 36% in 1979 to approximately 45% in 2018. Summaries of the state of knowledge of the major groups of Hymenoptera are presented, including brief comments on numbers of species, biology, changes in classification since 1979, and relevant taxonomic references

    Sexual dimorphism in the Arachnid orders.

    Get PDF
    Sexual differences in size and shape are common across the animal kingdom. The study of sexual dimorphism (SD) can provide insight into the sexual- and natural-selection pressures experienced by males and females in different species. Arachnids are diverse, comprising over 100,000 species, and exhibit some of the more extreme forms of SD in the animal kingdom, with the males and females of some species differing dramatically in body shape and/or size. Despite this, research on arachnid SD has primarily focused on specific clades as opposed to observing traits across arachnid orders, the smallest of which have received comparatively little attention. This review provides an overview of the research to date on the trends and potential evolutionary drivers for SD and sexual size dimorphism (SSD) in individual arachnid orders, and across arachnids as a whole. The most common trends across Arachnida are female-biased SSD in total body size, male-biased SSD in relative leg length and SD in pedipalp length and shape. However, the evolution of sexually dimorphic traits within the group is difficult to elucidate due to uncertainty in arachnid phylogenetic relationships. Based on the dataset we have gathered here, we highlight gaps in our current understanding and suggest areas for future research
    • 

    corecore