23 research outputs found

    Corrigendum: Patrones psicofisiológicos relacionados con el éxito en un curso de selección de operaciones especiales

    Get PDF
    In the original article, the reference for “El-On et al., 2003” was incorrectly written as “El-On, J., Ben-Noun, L., Galitza, Z., and Ohana, N. (2003). Case report: clinical and serological evaluation of echinococcosis of the spine. Trans. R. Soc. Trop. Med. Hyg. 97, 567–569. doi: 10.1016/S0035-9203(03)80031-7.” It should be “Kato, T. (2012). Development of the coping flexibility scale: evidence for the coping flexibility hypothesis. J. Couns. Psychol. 59, 262–273. doi: 10.1037/a0027770.” The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated. CopyrightEn el artículo original, la referencia a “El-On et al., 2003” estaba escrita incorrectamente como “El-On, J., Ben-Noun, L., Galitza, Z. y Ohana, N. (2003) . Reporte de caso: evaluación clínica y serológica de equinococosis de columna. Trans. R. Soc. Trop. Medicina. Hig. 97, 567–569. doi: 10.1016 / S0035-9203 (03) 80031-7 ”. Debería ser “Kato, T. (2012). Desarrollo de la escala de flexibilidad de afrontamiento: evidencia de la hipótesis de flexibilidad de afrontamiento. J. Couns. Psychol. 59, 262-273. doi: 10.1037 / a0027770 ". Los autores se disculpan por este error y afirman que esto no cambia las conclusiones científicas del artículo de ninguna manera. El artículo original ha sido actualizado. Derechos de auto

    Psychophysiological patterns related to success in a special operation selection course

    Get PDF
    Actual theaters of operations require fast actions from special operations units with a high level of readiness and survival. Mission accomplishment depends on their psychological and physiological performance. The aim of the present study was to analyze: (1) the physical parameters related with success in a special operation selection course; and (2) the modifications of the psychological profile of recruits before and after a special operation selection course. Fifty-five male soldiers of the Spanish Army (25.1 ± 5.0 years, 1.8 ± 0.1 cm, 76.8 ± 7.9 kg, 24.4 ± 2.5 kg/m2) undertaking a 10-week special operation selection course performed a battery of physiological and psychological tests. Results showed how successful soldiers presented higher leg strength, anaerobic running performance, and cardiovascular response than non-successful soldiers. The psychological values of life engagement test, acceptance and action questionnaire, coping flexibility scale, and perceived stress scale did not present significant differences after the selection course. We can conclude that success in a special operation selection course was related to higher anaerobic and cardiovascular fitness. This special operation selection course did not modify the psychological profile of successful soldiers.Universidad Europea de Madrid, Universidad de la Costa

    Human HELB is a processive motor protein that catalyzes RPA clearance from single-stranded DNA

    Get PDF
    Human DNA helicase B (HELB) is a poorly characterized helicase suggested to play both positive and negative regulatory roles in DNA replication and recombination. In this work, we used bulk and single-molecule approaches to characterize the biochemical activities of HELB protein with a particular focus on its interactions with Replication Protein A (RPA) and RPA–single-stranded DNA (ssDNA) filaments. HELB is a monomeric protein that binds tightly to ssDNA with a site size of ∼20 nucleotides. It couples ATP hydrolysis to translocation along ssDNA in the 5′ to 3′ direction accompanied by the formation of DNA loops. HELB also displays classical helicase activity, but this is very weak in the absence of an assisting force. HELB binds specifically to human RPA, which enhances its ATPase and ssDNA translocase activities but inhibits DNA unwinding. Direct observation of HELB on RPA nucleoprotein filaments shows that translocating HELB concomitantly clears RPA from ssDNA. This activity, which can allow other proteins access to ssDNA intermediates despite their shielding by RPA, may underpin the diverse roles of HELB in cellular DNA transactions.[Significance] Single-stranded DNA (ssDNA) is a key intermediate in many cellular DNA transactions, including DNA replication, repair, and recombination. Nascent ssDNA is rapidly bound by the Replication Protein A (RPA) complex, forming a nucleoprotein filament that both stabilizes ssDNA and mediates downstream processing events. Paradoxically, however, the very high affinity of RPA for ssDNA may block the recruitment of further factors. In this work, we show that RPA–ssDNA nucleoprotein filaments are specifically targeted by the human HELB helicase. Recruitment of HELB by RPA–ssDNA activates HELB translocation activity, leading to processive removal of upstream RPA complexes. This RPA clearance activity may underpin the diverse roles of HELB in replication and recombination.Work in the laboratory of M.S.D. was supported by an Elizabeth Blackwell Early Career Fellowship from the University of Bristol (to O.J.W.) and Wellcome Trust Investigator Grant 100401/Z/12/Z (to M.S.D.). Work in the laboratory of E.A. was supported by NIH Grants GM130746 (to E.A.) and GM133967 (to E.A.). F.M.-H. acknowledges support from the European Research Council under European Union Horizon 2020 Research and Innovation Program Grant Agreement 681299. Work in the laboratory of F.M.-H. was also supported by Spanish Ministry of Science and Innovation Grants BFU2017-83794-P (AEI/FEDER, UE; to F.M.-H.) and PID2020-112998GB-100 (AEI/10.13039/501100011033; to F.M.-H.) and Comunidad de Madrid Grants Tec4-Bio–S2018/NMT-4443 (to F.M.-H.) and NanoBioCancer–Y2018/BIO-4747 (to F.M.-H.)

    Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles

    Full text link
    "This is the peer reviewed version of the following article: Hormeño, Silvia, Paula Gregorio-Godoy, Jorge Pérez-Juste, Luis M. Liz-Marzán, Beatriz H. Juárez, and J. Ricardo Arias-Gonzalez. 2013. Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small 10 (2). Wiley: 376 84. doi:10.1002/smll.201301912, which has been published in final form at https://doi.org/10.1002/smll.201301912. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Temperature changes in the vicinity of a single absorptive nanostructure caused by local heating have strong implications in technologies such as integrated electronics or biomedicine. Herein, the temperature changes in the vicinity of a single optically trapped spherical Au nanoparticle encapsulated in a thermo¿responsive poly(N¿isopropylacrylamide) shell (Au@pNIPAM) are studied in detail. Individual beads are trapped in a counter¿propagating optical tweezers setup at various laser powers, which allows the overall particle size to be tuned through the phase transition of the thermo¿responsive shell. The experimentally obtained sizes measured at different irradiation powers are compared with average size values obtained by dynamic light scattering (DLS) from an ensemble of beads at different temperatures. The size range and the tendency to shrink upon increasing the laser power in the optical trap or by increasing the temperature for DLS agree with reasonable accuracy for both approaches. Discrepancies are evaluated by means of simple models accounting for variations in the thermal conductivity of the polymer, the viscosity of the aqueous solution and the absorption cross section of the coated Au nanoparticle. These results show that these parameters must be taken into account when considering local laser heating experiments in aqueous solution at the nanoscale. Analysis of the stability of the Au@pNIPAM particles in the trap is also theoretically carried out for different particle sizes.This work has been partially supported by Comunidad de Madrid through NANOBIOMAGNET S2009-MAT-1726 and the Spanish Ministry of Science and Innovation through RYC-2007-01709, RYC-2007-01765 and MAT-2009-13488. P. G-G. acknowledges a Research Initiation Grant at IMDEA Nanociencia. The authors thank Dr. Reinhold Wannemacher for fruitful discussions.Hormeño, S.; Gregorio-Godoy, P.; Pérez-Juste, J.; Liz-Marzán, L.; Juárez, B.; Arias-Gonzalez, JR. (2014). Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small. 10(2):376-384. https://doi.org/10.1002/smll.201301912S376384102Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2(5), 681-693. doi:10.2217/17435889.2.5.681Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R., & Lin, C. P. (2003). Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles. Biophysical Journal, 84(6), 4023-4032. doi:10.1016/s0006-3495(03)75128-5PEREZJUSTE, J., PASTORIZASANTOS, I., LIZMARZAN, L., & MULVANEY, P. (2005). Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 249(17-18), 1870-1901. doi:10.1016/j.ccr.2005.01.030Averitt, R. D., Sarkar, D., & Halas, N. J. (1997). Plasmon Resonance Shifts of Au-CoatedAu2SNanoshells: Insight into Multicomponent Nanoparticle Growth. Physical Review Letters, 78(22), 4217-4220. doi:10.1103/physrevlett.78.4217Arias-González, J. R., & Nieto-Vesperinas, M. (2001). Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation. Journal of the Optical Society of America A, 18(3), 657. doi:10.1364/josaa.18.000657Seol, Y., Carpenter, A. E., & Perkins, T. T. (2006). Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Optics Letters, 31(16), 2429. doi:10.1364/ol.31.002429Govorov, A. O., & Richardson, H. H. (2007). Generating heat with metal nanoparticles. Nano Today, 2(1), 30-38. doi:10.1016/s1748-0132(07)70017-8Bendix, P. M., Reihani, S. N. S., & Oddershede, L. B. (2010). Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. ACS Nano, 4(4), 2256-2262. doi:10.1021/nn901751wQin, Z., & Bischof, J. C. (2012). Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev., 41(3), 1191-1217. doi:10.1039/c1cs15184cHaro-González, P., Ramsay, W. T., Maestro, L. M., del Rosal, B., Santacruz-Gomez, K., del Carmen Iglesias-de la Cruz, M., … Paterson, L. (2013). Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells. Small, 9(12), 2162-2170. doi:10.1002/smll.201201740Do, J., Schreiber, R., Lutich, A. A., Liedl, T., Rodríguez-Fernández, J., & Feldmann, J. (2012). Design and Optical Trapping of a Biocompatible Propeller-like Nanoscale Hybrid. Nano Letters, 12(9), 5008-5013. doi:10.1021/nl302775eGoldenberg, H., & Tranter, C. J. (1952). Heat flow in an infinite medium heated by a sphere. British Journal of Applied Physics, 3(9), 296-298. doi:10.1088/0508-3443/3/9/307Pustovalov, V. K. (2005). Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chemical Physics, 308(1-2), 103-108. doi:10.1016/j.chemphys.2004.08.005Pustovalov, V. K., & Babenko, V. A. (2004). Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. Laser Physics Letters, 1(10), 516-520. doi:10.1002/lapl.200410111Richardson, H. H., Hickman, Z. N., Govorov, A. O., Thomas, A. C., Zhang, W., & Kordesch, M. E. (2006). Thermooptical Properties of Gold Nanoparticles Embedded in Ice:  Characterization of Heat Generation and Melting. Nano Letters, 6(4), 783-788. doi:10.1021/nl060105lSiems, A., Weber, S. A. L., Boneberg, J., & Plech, A. (2011). Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles. New Journal of Physics, 13(4), 043018. doi:10.1088/1367-2630/13/4/043018Shah, J., Park, S., Aglyamov, S., Larson, T., Ma, L., Sokolov, K., … Emelianov, S. Y. (2008). Photoacoustic imaging and temperature measurement for photothermal cancer therapy. Journal of Biomedical Optics, 13(3), 034024. doi:10.1117/1.2940362Baffou, G., Kreuzer, M. P., Kulzer, F., & Quidant, R. (2009). Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Optics Express, 17(5), 3291. doi:10.1364/oe.17.003291Gupta, A., Kane, R. S., & Borca-Tasciuc, D.-A. (2010). Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles. Journal of Applied Physics, 108(6), 064901. doi:10.1063/1.3485601Maestro, L. M., Haro-González, P., Coello, J. G., & Jaque, D. (2012). Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry. Applied Physics Letters, 100(20), 201110. doi:10.1063/1.4718605Jones, C. D., & Lyon, L. A. (2000). Synthesis and Characterization of Multiresponsive Core−Shell Microgels. Macromolecules, 33(22), 8301-8306. doi:10.1021/ma001398mDas, M., Sanson, N., Fava, D., & Kumacheva, E. (2007). Microgels Loaded with Gold Nanorods:  Photothermally Triggered Volume Transitions under Physiological Conditions†. Langmuir, 23(1), 196-201. doi:10.1021/la061596sKarg, M., Pastoriza-Santos, I., Pérez-Juste, J., Hellweg, T., & Liz-Marzán, L. M. (2007). Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties. Small, 3(7), 1222-1229. doi:10.1002/smll.200700078Sershen, S. R., Westcott, S. L., Halas, N. J., & West, J. L. (2000). Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. Journal of Biomedical Materials Research, 51(3), 293-298. doi:10.1002/1097-4636(20000905)51:33.0.co;2-tSvoboda, K., & Block, S. M. (1994). Optical trapping of metallic Rayleigh particles. Optics Letters, 19(13), 930. doi:10.1364/ol.19.000930Arias-González, J. R., & Nieto-Vesperinas, M. (2003). Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. Journal of the Optical Society of America A, 20(7), 1201. doi:10.1364/josaa.20.001201Hansen, P. M., Bhatia, V. K., Harrit, N., & Oddershede, L. (2005). Expanding the Optical Trapping Range of Gold Nanoparticles. Nano Letters, 5(10), 1937-1942. doi:10.1021/nl051289rHormeño, S., Bastús, N. G., Pietsch, A., Weller, H., Arias-Gonzalez, J. R., & Juárez, B. H. (2011). Plasmon-Exciton Interactions on Single Thermoresponsive Platforms Demonstrated by Optical Tweezers. Nano Letters, 11(11), 4742-4747. doi:10.1021/nl202560jRodríguez-Fernández, J., Fedoruk, M., Hrelescu, C., Lutich, A. A., & Feldmann, J. (2011). Triggering the volume phase transition of core–shell Au nanorod–microgel nanocomposites with light. Nanotechnology, 22(24), 245708. doi:10.1088/0957-4484/22/24/245708Kyrsting, A., Bendix, P. M., Stamou, D. G., & Oddershede, L. B. (2011). Heat Profiling of Three-Dimensionally Optically Trapped Gold Nanoparticles using Vesicle Cargo Release. Nano Letters, 11(2), 888-892. doi:10.1021/nl104280cMao, H., Ricardo Arias-Gonzalez, J., Smith, S. B., Tinoco, I., & Bustamante, C. (2005). Temperature Control Methods in a Laser Tweezers System. Biophysical Journal, 89(2), 1308-1316. doi:10.1529/biophysj.104.054536Hormeño, S., Ibarra, B., Chichón, F. J., Habermann, K., Lange, B. M. H., Valpuesta, J. M., … Arias-Gonzalez, J. R. (2009). Single Centrosome Manipulation Reveals Its Electric Charge and Associated Dynamic Structure. Biophysical Journal, 97(4), 1022-1030. doi:10.1016/j.bpj.2009.06.004Honda, M., Saito, Y., Smith, N. I., Fujita, K., & Kawata, S. (2011). Nanoscale heating of laser irradiated single gold nanoparticles in liquid. Optics Express, 19(13), 12375. doi:10.1364/oe.19.012375Ionov, L., Stamm, M., & Diez, S. (2006). Reversible Switching of Microtubule Motility Using Thermoresponsive Polymer Surfaces. Nano Letters, 6(9), 1982-1987. doi:10.1021/nl0611539Pelton, R. (2000). Temperature-sensitive aqueous microgels. Advances in Colloid and Interface Science, 85(1), 1-33. doi:10.1016/s0001-8686(99)00023-8Garner, B. W., Cai, T., Ghosh, S., Hu, Z., & Neogi, A. (2009). Refractive Index Change Due to Volume-Phase Transition in Polyacrylamide Gel Nanospheres for Optoelectronics and Bio-photonics. Applied Physics Express, 2, 057001. doi:10.1143/apex.2.057001Schmidt, S., Motschmann, H., Hellweg, T., & von Klitzing, R. (2008). Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study. Polymer, 49(3), 749-756. doi:10.1016/j.polymer.2007.12.025Sánchez-Iglesias, A., Grzelczak, M., Rodríguez-González, B., Guardia-Girós, P., Pastoriza-Santos, I., Pérez-Juste, J., … Liz-Marzán, L. M. (2009). Synthesis of Multifunctional Composite Microgels via In Situ Ni Growth on pNIPAM-Coated Au Nanoparticles. ACS Nano, 3(10), 3184-3190. doi:10.1021/nn9006169Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370Aden, A. L., & Kerker, M. (1951). Scattering of Electromagnetic Waves from Two Concentric Spheres. Journal of Applied Physics, 22(10), 1242-1246. doi:10.1063/1.1699834Wang, M. C., & Uhlenbeck, G. E. (1945). On the Theory of the Brownian Motion II. Reviews of Modern Physics, 17(2-3), 323-342. doi:10.1103/revmodphys.17.323Berg-Sørensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers. Review of Scientific Instruments, 75(3), 594-612. doi:10.1063/1.1645654Andrä, W., d’ Ambly, C. ., Hergt, R., Hilger, I., & Kaiser, W. . (1999). Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 194(1-3), 197-203. doi:10.1016/s0304-8853(98)00552-6Sengers, J. V., & Watson, J. T. R. (1986). Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance. Journal of Physical and Chemical Reference Data, 15(4), 1291-1314. doi:10.1063/1.555763Andersson, O., & Johari, G. P. (2011). Effect of pressure on thermal conductivity and pressure collapse of ice in a polymer-hydrogel and kinetic unfreezing at 1 GPa. The Journal of Chemical Physics, 134(12), 124903. doi:10.1063/1.3568817Arai, F., Ng, C., Maruyama, H., Ichikawa, A., El-Shimy, H., & Fukuda, T. (2005). On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Lab on a Chip, 5(12), 1399. doi:10.1039/b502546jCoelho, J. M. P., Abreu, M. A., & Carvalho Rodrigues, F. (2004). High-speed laser cutting of superposed thermoplastic films: thermal modeling and process characterization. Optics and Lasers in Engineering, 42(1), 27-39. doi:10.1016/s0143-8166(03)00071-xDavidson, S. R. H., & Sherar, M. D. (2003). Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material. International Journal of Hyperthermia, 19(5), 551-562. doi:10.1080/02656730310001607995HOARE, T., & PELTON, R. (2008). Characterizing charge and crosslinker distributions in polyelectrolyte microgels. Current Opinion in Colloid & Interface Science, 13(6), 413-428. doi:10.1016/j.cocis.2008.03.004Carregal-Romero, S., Buurma, N. J., Pérez-Juste, J., Liz-Marzán, L. M., & Hervés, P. (2010). Catalysis by Au@pNIPAM Nanocomposites: Effect of the Cross-Linking Density. Chemistry of Materials, 22(10), 3051-3059. doi:10.1021/cm903261bMurphy, K. P., & Freire, E. (1992). Thermodynamics of Structural Stability and Cooperative Folding Behavior in Proteins. Advances in Protein Chemistry, 313-361. doi:10.1016/s0065-3233(08)60556-2Evans, J. S., Sun, Y., Senyuk, B., Keller, P., Pergamenshchik, V. M., Lee, T., & Smalyukh, I. I. (2013). Active Shape-Morphing Elastomeric Colloids in Short-Pitch Cholesteric Liquid Crystals. Physical Review Letters, 110(18). doi:10.1103/physrevlett.110.187802Sun, Y., Evans, J. S., Lee, T., Senyuk, B., Keller, P., He, S., & Smalyukh, I. I. (2012). Optical manipulation of shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrystals. Applied Physics Letters, 100(24), 241901. doi:10.1063/1.4729143Contreras-Cáceres, R., Pacifico, J., Pastoriza-Santos, I., Pérez-Juste, J., Fernández-Barbero, A., & Liz-Marzán, L. M. (2009). Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross-linking, Overall Dimensions, and Core Growth. Advanced Functional Materials, 19(19), 3070-3076. doi:10.1002/adfm.200900481Smith, S. B., Cui, Y., & Bustamante, C. (2003). [7] Optical-trap force transducer that operates by direct measurement of light momentum. Biophotonics, Part B, 134-162. doi:10.1016/s0076-6879(03)61009-

    Performance of fuzzy multi-criteria decision analysis of emergency system in COVID-19 pandemic. An extensive narrative review

    Get PDF
    The actual coronavirus disease 2019 (COVID-19) pandemic has led to the limit of emergency systems worldwide, leading to the collapse of health systems, police, first responders, as well as other areas. Various ways of dealing with this world crisis have been proposed from many aspects, with fuzzy multi-criteria decision analysis being a method that can be applied to a wide range of emergency systems and professional groups, aiming to confront several associated issues and challenges. The purpose of this critical review was to discuss the basic principles, present current applications during the first pandemic wave, and propose future implications of this methodology. For this purpose, both primary sources, such as scientific articles, and secondary ones, such as bibliographic indexes, web pages, and databases, were used. The main search engines were PubMed, SciELO, and Google Scholar. The method was a systematic literature review of the available literature regarding the performance of the fuzzy multi-criteria decision analysis of emergency systems in the COVID-19 pandemic. The results of this study highlight the importance of the fuzzy multi-criteria decision analysis method as a beneficial tool for healthcare workers and first responders' emergency professionals to face this pandemic as well as to manage the created uncertainty and its related risks

    Centrosomes : methods for preparation

    Get PDF
    The centrosome of higher eukaryotic cells is the main microtubule-organising centre. To understand the molecular mechanisms underlying this organelle's biogenesis and important functions in several cellular processes, such as microtubule nucleation, cell division and stress response, it was critical to develop methods for isolating biochemically meaningful quantities of centrosomes. Centrosomes have been isolated from a variety of organisms and based on these preparations, numerous aspects of this intriguing organelle's morphological, functional and biochemical properties have been uncovered. Better isolation procedures along with the development of new technologies, like RNAi (ribonucleic acid interference) and the increasing accuracy of mass spectrometry and electron microscopy techniques, have profoundly improved our knowledge of the centrosome, leading to a better understanding of its implications in various cellular processes and in diseases

    Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for heat-triggered drug release

    Get PDF
    The engineering of responsive multifunctional delivery systems that combine therapeutic and diagnostic (theranostic) capabilities holds great promise and interest. We describe the design of thermosensitive liposome-nanoparticle (NP) hybrids that can modulate drug release in response to external heating stimulus. These hybrid systems were successfully engineered by the incorporation of gold, silver, and iron oxide NPs into the lipid bilayer of lysolipid-containing thermosensitive liposomes (LTSL). Structural characterization of LTSL-NP hybrids using cryo-EM and AFM revealed the incorporation of metallic NPs into the lipid membranes without compromising doxorubicin loading and retention capability. The presence of metallic NPs in the lipid bilayer reinforced bilayer retention and offered a nanoparticle concentration-dependent modulation of drug release in response to external heating. In conclusion, LTSL-NP hybrids represent a promising versatile platform based on LTSL liposomes that could further utilize the properties of the embedded NPs for multifunctional theranostic applications

    Nutrición en la actual pandemia de COVID-19. Una revisión narrativa

    No full text
    The pandemic of Coronavirus Disease 2019 (COVID-19) has shocked world health authorities generating a global health crisis. The present study discusses the main finding in nutrition sciences associated with COVID-19 in the literature. We conducted a consensus critical review using primary sources, scientific articles, and secondary bibliographic indexes, databases, and web pages. The method was a narrative literature review of the available literature regarding nutrition interventions and nutrition-related factors during the COVID-19 pandemic. The main search engines used in the present research were PubMed, SciELO, and Google Scholar. We found how the COVID-19 lockdown promoted unhealthy dietary changes and increases in body weight of the population, showing obesity and low physical activity levels as increased risk factors of COVID-19 affection and physiopathology. In addition, hospitalized COVID-19 patients presented malnutrition and deficiencies in vitamin C, D, B12 selenium, iron, omega-3, and medium and long-chain fatty acids highlighting the potential health effect of vitamin C and D interventions. Further investigations are needed to show the complete role and implications of nutrition both in the prevention and in the treatment of patients with COVID-19.La pandemia de la enfermedad del coronavirus 2019 (COVID-19) ha conmocionado a las autoridades sanitarias mundiales generando una crisis sanitaria mundial. El presente estudio analiza el principal hallazgo en nutrición ciencias asociadas con COVID-19 en la literatura. Realizamos una revisión crítica de consenso utilizando fuentes primarias, artículos científicos e índices bibliográficos secundarios, bases de datos y páginas web. El método fue una revisión de la literatura narrativa de la literatura disponible con respecto a las intervenciones nutricionales y los factores relacionados con la nutrición durante la pandemia de COVID-19. Los principales motores de búsqueda utilizados en la presente investigación fueron PubMed, SciELO y Google Scholar. Descubrimos cómo el COVID-19 el bloqueo promovió cambios dietéticos poco saludables y aumentos en el peso corporal de la población, mostrando la obesidad y los bajos niveles de actividad física como factores de riesgo incrementados de la afección COVID-19 y fisiopatología. Además, los pacientes hospitalizados por COVID-19 presentaban desnutrición y deficiencias de vitamina C, D, B12, selenio, hierro, omega-3 y ácidos grasos de cadena media y larga destacando el posible efecto sobre la salud de las intervenciones con vitamina C y D. Investigaciones adicionales son necesario para mostrar el papel completo y las implicaciones de la nutrición tanto en la prevención como en la tratamiento de pacientes con COVID-19
    corecore