92 research outputs found

    Body image distortion in fifth and sixth grade students may lead to stress, depression, and undesirable dieting behavior

    Get PDF
    The widespread pursuit of a thin physique may have a detrimental impact on the wellbeing of preadolescents. The influence of body image distortions on the lifestyles, dieting behaviors, and psychological factors was investigated in 631 fifth and sixth grade children in Kyeonggi-do, Korea. Children were classified into three weight groups (underweight, normal, and overweight) and three perception groups (underestimation, normal, and overestimation). Necessary information was obtained by questionnaire, and each subject's weight status was determined by the Röhrer index calculated from the annual measurement records, which were obtained from the school. According to their current weights, 57.4% of children were normal and 32.2% were overweight or obese, 16.6% of the children overestimated their body weight, and 55.2% had an undistorted body image. Overweight children had desirable lifestyles and dietary habits and presented reasonable weight control behaviors. Compared to those without distortion, the overestimated group had greater interest in weight control (P = 0.003) and dissatisfaction with their body weights (P = 0.011), presented unhealthy reasons to lose weight (P = 0.026), and had higher scores for "feeling sad when comparing own body with others" (P = 0.000) and for "easily getting annoyed and tired" (P = 0.037), even though they had similar obesity indices. More subjects from the overestimation group (P = 0.006) chose drama/movies as their favorite TV programs, suggesting a possible role for the media in body image distortion. These findings suggest that body image distortion can lead preadolescents to develop stress about obesity and unhealthy dieting practices, despite similar obesity indices to those without distorted body images. These results emphasize the importance of having an undistorted body image

    A study on nutrition knowledge and dietary behavior of elementary school children in Seoul

    Get PDF
    The purpose of this study was to investigate the nutrition and diet related knowledge, attitude, and behavior of elementary school children in Seoul. The subjects included were 439 (male 236, female 203) elementary school children in the 4th to the 6th grades. The statistical analysis was conducted using SPSS 12.0 program. The average obesity index (OI) was 104.98 and 99.82 for male and female subjects, respectively. The average percentage of underweight, normal, overweight and obese of subjects was 33.7%, 32.8%, 12.3%, and 19.4%, respectively. The percentage of the underweight group of female subjects was higher than that of the male subjects. The percentage of the obese group of male subjects was higher than that of the female subjects. The average score of nutrition knowledge, nutrition attitude and dietary behavior was 6.8, 7.44, and 7.34, respectively. Dietary behavior of male subjects was positively correlated with parents' education levels, monthly household income and nutrition attitude. Dietary behavior of female subjects was positively correlated with monthly household income, nutrition knowledge and nutrition attitude. Dietary behavior of female subjects was positively correlated with obesity index (OI). Proper nutrition education and intervention are required for the improvement of elementary school children's nutrition knowledge, nutrition attitudes and dietary behaviors

    Induction of Remission is Difficult due to Frequent Relapse during Tapering Steroids in Korean Patients with Polymyalgia Rheumatica

    Get PDF
    Polymyalgia rheumatica is an inflammatory disease affecting elderly and involving the shoulder and pelvic girdles. No epidemiological study of polymyalgia rheumatica was conducted in Korea. We retrospectively evaluated patients with polymyalgia rheumatica followed up at the rheumatology clinics of 10 tertiary hospitals. In total 51 patients, 36 patients (70.6%) were female. Age at disease onset was 67.4 yr. Twenty-three patients (45.1%) developed polymyalgia rheumatica in winter. Shoulder girdle ache was observed in 45 patients (90%) and elevated erythrocyte sedimentation rate (> 40 mm/h) in 49 patients (96.1%). Initial steroid dose was 23.3 mg/d prednisolone equivalent. Time to normal erythrocyte sedimentation rate was 4.1 months. Only 8 patients (15.7%) achieved remission. Among 41 patients followed up, 28 patients (68.3%) had flare at least once. Number of flares was 1.5 ± 1.6. The frequency of flare was significantly lower in patients with remission (P = 0.02). In Korea, polymyalgia rheumatica commonly develops during winter. Initial response to steroid is fairly good, but the prognosis is not benign because remission is rare with frequent relapse requiring long-term steroid treatment

    High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device

    Get PDF
    This paper introduces the fundamental physical characteristics of organic photovoltaic (OPV) devices. Photoelectric conversion efficiency is crucial to the evaluation of quality in OPV devices, and enhancing efficiency has been spurring on researchers to seek alternatives to this problem. In this paper, we focus on organic photovoltaic (OPV) devices and review several approaches to enhance the energy conversion efficiency of small molecular heterojunction OPV devices based on an optimal metal-phthalocyanine/fullerene (C60) planar heterojunction thin film structure. For the sake of discussion, these mechanisms have been divided into electrical and optical sections: (1) Electrical: Modification on electrodes or active regions to benefit carrier injection, charge transport and exciton dissociation; (2) Optical: Optional architectures or infilling to promote photon confinement and enhance absorption

    Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease

    Get PDF
    Neurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker

    Study of Charge-Dependent Transport and Toxicity of Peptide-Functionalized Silver Nanoparticles Using Zebrafish Embryos and Single Nanoparticle Plasmonic Spectroscopy

    Get PDF
    Nanomaterials possess unusually high surface area-to-volume ratios and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ±+2.7 nm in diameter) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs+ζ), negatively (Ag-CALNNS NPs−2ζ), and more negatively charged NPs (Ag-CALNNE NPs−4ζ), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral, and negative charges on the surface of the NPs at pH 4-10. We have studied their charge-dependent transport into early developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create chargedependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs+ζ (positively charged) are the most biocompatible while the Ag-CALNNE NPs−4ζ (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups, and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs in vivo and in tissues, and reveals the possibility of rational design of biocompatible NPs

    In Vivo Quantitative Study of Sized-Dependent Transport and Toxicity of Single Silver Nanoparticles Using Zebrafish Embryos

    Get PDF
    Nanomaterials possess distinctive physicochemical properties (e.g., small sizes and high surface area-to-volume ratios) and promise a wide variety of applications, ranging from the design of high quality consumer products to effective disease diagnosis and therapy. These properties can lead to toxic effects, potentially hindering advances in nanotechnology. In this study, we have synthesized and characterized purified and stable (nonaggregation) silver nanoparticles (Ag NPs, 41.6 ± 9.1 nm in average diameter) and utilized early developing (cleavage-stage) zebrafish embryos (critical aquatic and eco- species) as in vivo model organisms to probe the diffusion and toxicity of Ag NPs. We found that single Ag NPs (30-72 nm diameters) passively diffused into the embryos through chorionic pores via random Brownian motion and stayed inside the embryos throughout their entire development (120 hours-post-fertilization, hpf). Dose-and size-dependent toxic effects of the NPs on embryonic development were observed, showing the possibility of tuning biocompatibility and toxicity of the NPs. At lower concentrations of the NPs (≤0.02 nM), 75-91% of embryos developed into normal zebrafish. At the higher concentrations of NPs (≥0.20 nM), 100% of embryos became dead. At the concentrations in between (0.02-0.2 nM), embryos developed into various deformed zebrafish. Number and sizes of individual Ag NPs embedded in tissues of normal and deformed zebrafish at 120 hpf were quantitatively analyzed, showing deformed zebrafish with higher number of larger NPs than normal zebrafish and size-dependent nanotoxicity. By comparing with our previous studies of smaller Ag NPs (11.6 ± 3.5 nm), we found striking size-dependent nanotoxicity that, at the same molar concentration, the larger Ag NPs (41.6 ± 9.1 nm) are more toxic than the smaller Ag NPs (11.6 ± 3.5 nm)

    Inorganic-Organic Hybrid Nanomaterials for Therapeutic and Diagnostic Imaging Applications

    Get PDF
    Nanotechnology offers outstanding potential for future biomedical applications. In particular, due to their unique characteristics, hybrid nanomaterials have recently been investigated as promising platforms for imaging and therapeutic applications. This class of nanoparticles can not only retain valuable features of both inorganic and organic moieties, but also provides the ability to systematically modify the properties of the hybrid material through the combination of functional elements. Moreover, the conjugation of targeting moieties on the surface of these nanomaterials gives them specific targeted imaging and therapeutic properties. In this review, we summarize the recent reports in the synthesis of hybrid nanomaterials and their applications in biomedical areas. Their applications as imaging and therapeutic agents in vivo will be highlighted

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore