482 research outputs found

    Thermally Stabilised Poly(vinyl alcohol) Nanofibrous Materials Produced by Scalable Electrospinning: Applications in Tissue Engineering

    Get PDF
    Electrospinning is a widely employed manufacturing platform for tissue engineering applications because it produces structures that closely mimic the extracellular matrix. Herein, we demonstrate the potential of poly(vinyl alcohol) (PVA) electrospun nanofibers as scaffolds for tissue engineering. Nanofibers were created by needleless direct current electrospinning from PVA with two different degrees of hydrolysis (DH), namely 98% and 99% and subsequently heat treated at 180 °C for up to 16 h to render them insoluble in aqueous environments without the use of toxic cross-linking agents. Despite the small differences in the PVA chemical structure, the changes in the material properties were substantial. The higher degree of hydrolysis resulted in non-woven supports with thinner fibres (285 ± 81 nm c.f. 399 ± 153 nm) that were mechanically stronger by 62% (±11%) and almost twice as more crystalline than those from 98% hydrolysed PVA. Although prolonged heat treatment (16 h) did not influence fibre morphology, it reduced the crystallinity and tensile strength for both sets of materials. All samples demonstrated a lack or very low degree of haemolysis (<5%), and there were no notable changes in their anticoagulant activity (≀3%). Thrombus formation, on the other hand, increased by 82% (±18%) for the 98% hydrolysed samples and by 71% (±10%) for the 99% hydrolysed samples, with heat treatment up to 16 h, as a direct consequence of the preservation of the fibrous morphology. 3T3 mouse fibroblasts showed the best proliferation on scaffolds that were thermally stabilised for 4 and 8 h. Overall these scaffolds show potential as ‘greener’ alternatives to other electrospun tissue engineering materials, especially in cases where they may be used as delivery vectors for heat tolerant additives

    Assessment of thermally stabilized electrospun poly(vinyl alcohol) materials as cell permeable membranes for a novel blood salvage device

    Get PDF
    The use of Intraoperative Cell Salvage (ICS) is currently limited in oncological surgeries, due to safety concerns associated with the ability of existing devices to successfully remove circulating tumour cells. In this work, we present the first stages towards the creation of an alternative platform to current cell savers, based on the extremely selective immunoaffinity membrane chromatography principle. Non-woven membranes were produced via electrospinning using poly(vinyl alcohol) (PVA), and further heat treated at 180 °C to prevent their dissolution in aqueous environments and preserve their fibrous morphology. The effects of the PVA degree of hydrolysis (DH) (98 % vs 99 %), method of electrospinning (needleless DC vs AC), and heat treatment duration (1-8 h) were investigated. All heat treated supports maintained their cytocompatibility, whilst tensile tests indicated that the 99 % hydrolysed DC electrospun mats were stronger compared to their 98 % DH counterparts. Although, and at the described conditions, AC electrospinning produced fibres with more than double the diameter compared to those from DC electrospinning, it was not chosen for subsequent experiments because it is still under development. Evidence of unimpeded passage of SY5Y neuroblastoma cells and undiluted defibrinated sheep's blood in flow-through filtration experiments confirmed the successful creation of 3D networks with minimum resistance to mass transfer and lack of non-specific cell binding to the base material, paving the way for the development of novel, highly selective ICS devices for tumour surgeries

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY challenge

    Get PDF
    Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Measurement of the production cross section for W-bosons in association with jets in pp collisions at s=7 TeV with the ATLAS detector

    Get PDF
    This Letter reports on a first measurement of the inclusive W + jets cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and muon decay modes of the W-boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-to-leading jets in the event. Measurements are also presented of the ratio of cross sections sigma (W + >= n)/sigma(W + >= n - 1) for inclusive jet multiplicities n = 1-4. The results, based on an integrated luminosity of 1.3 pb(-1), have been corrected for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics. The measured cross sections are compared to particle-level predictions based on perturbative QCD. Next-to-leading order calculations, studied here for n <= 2, are found in good agreement with the data. Leading-order multiparton event generators, normalized to the NNLO total cross section, describe the data well for all measured jet multiplicitie

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Mahatma Gandhi and the Prisoner’s Dilemma: Strategic Civil Disobedience and Great Britain’s Great Loss of Empire in India

    Get PDF
    This paper examines the relationship between statutory monopoly and collective action as a multi-person assurance game culminating in an end to British Empire in India. In a simple theoretical model, it is demonstrated whether or not a collective good enjoys (or is perceived to enjoy) pure jointness of production and why the evolutionary stable strategy of non-violence was supposed to work on the principle that the coordinated reaction of a ethnically differentiated religious crowd to a conflict between two parties (of colonizer and colonized) over confiscatory salt taxation would significantly affect its course. Following Mancur Olson (1965) and Dennis Chong (1991), a model of strategic civil disobedience is created which is used to demonstrate how collective action can be used to produce an all-or-nothing public good to achieve economic and political independence

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good
    • 

    corecore