15 research outputs found

    SMPD1 variants do not have a major role in rapid eye movement sleep behavior disorder

    No full text
    Mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene were reported to be associated with Parkinson's disease and dementia with Lewy bodies. In the current study, we aimed to evaluate the role of SMPD1 variants in isolated rapid eye movement sleep behavior disorder (iRBD). SMPD1 and its untranslated regions were sequenced using targeted next-generation sequencing in 959 iRBD patients and 1287 controls from European descent. Our study reports no statistically significant association of SMPD1 variants and iRBD. It is hence unlikely that SMPD1 plays a major role in iRBD

    Comprehensive Analysis of Familial Parkinsonism Genes in Rapid-Eye-Movement Sleep Behavior Disorder

    No full text
    Background: There is only partial overlap in the genetic background of isolated rapid-eye-movement sleep behavior disorder (iRBD) and Parkinson's disease (PD). Objective: To examine the role of autosomal dominant and recessive PD or atypical parkinsonism genes in the risk of iRBD. Methods: Ten genes, comprising the recessive genes PRKN, DJ-1 (PARK7), PINK1, VPS13C, ATP13A2, FBXO7, and PLA2G6 and the dominant genes LRRK2, GCH1, and VPS35, were fully sequenced in 1039 iRBD patients and 1852 controls of European ancestry, followed by association tests. Results: We found no association between rare heterozygous variants in the tested genes and risk of iRBD. Several homozygous and compound heterozygous carriers were identified, yet there was no overrepresentation in iRBD patients versus controls. Conclusion: Our results do not support a major role for variants in these genes in the risk of iRBD. \ua9 2020 International Parkinson and Movement Disorder Society

    Röntgenschäden

    No full text

    Fine-Mapping of SNCA in Rapid Eye Movement Sleep Behavior Disorder and Overt Synucleinopathies

    No full text
    Objective: Rapid eye movement sleep behavior disorder (RBD) is a prodromal synucleinopathy, as >80% will eventually convert to overt synucleinopathy. We performed an in-depth analysis of the SNCA locus to identify RBD-specific risk variants. Methods: Full sequencing and genotyping of SNCA was performed in isolated/idiopathic RBD (iRBD, n = 1,076), Parkinson disease (PD, n = 1,013), dementia with Lewy bodies (DLB, n = 415), and control subjects (n = 6,155). The iRBD cases were diagnosed with RBD prior to neurodegeneration, although some have since converted. A replication cohort from 23andMe of PD patients with probable RBD (pRBD) was also analyzed (n = 1,782 cases; n = 131,250 controls). Adjusted logistic regression models and meta-analyses were performed. Effects on conversion rate were analyzed in 432 RBD patients with available data using Kaplan\u2013Meier survival analysis. Results: A 5\u2032-region SNCA variant (rs10005233) was associated with iRBD (odds ratio [OR] = 1.43, p = 1.1E-08), which was replicated in pRBD. This variant is in linkage disequilibrium (LD) with other 5\u2032 risk variants across the different synucleinopathies. An independent iRBD-specific suggestive association (rs11732740) was detected at the 3\u2032 of SNCA (OR = 1.32, p = 4.7E-04, not statistically significant after Bonferroni correction). Homozygous carriers of both iRBD-specific SNPs were at highly increased risk for iRBD (OR = 5.74, p = 2E-06). The known top PD-associated variant (3\u2032 variant rs356182) had an opposite direction of effect in iRBD compared to PD. Interpretation: There is a distinct pattern of association at the SNCA locus in RBD as compared to PD, with an opposite direction of effect at the 3\u2032 of SNCA. Several 5\u2032 SNCA variants are associated with iRBD and with pRBD in overt synucleinopathies. ANN NEUROL 2020

    Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study

    No full text
    Idiopathic REM sleep behaviour disorder (iRBD) is a powerful early sign of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. This provides an unprecedented opportunity to directly observe prodromal neurodegenerative states, and potentially intervene with neuroprotective therapy. For future neuroprotective trials, it is essential to accurately estimate phenoconversion rate and identify potential predictors of phenoconversion. This study assessed the neurodegenerative disease risk and predictors of neurodegeneration in a large multicentre cohort of iRBD. We combined prospective follow-up data from 24 centres of the International RBD Study Group. At baseline, patients with polysomnographically-confirmed iRBD without parkinsonism or dementia underwent sleep, motor, cognitive, autonomic and special sensory testing. Patients were then prospectively followed, during which risk of dementia and parkinsonsim were assessed. The risk of dementia and parkinsonism was estimated with Kaplan-Meier analysis. Predictors of phenoconversion were assessed with Cox proportional hazards analysis, adjusting for age, sex, and centre. Sample size estimates for disease-modifying trials were calculated using a time-to-event analysis. Overall, 1280 patients were recruited. The average age was 66.3 ± 8.4 and 82.5% were male. Average follow-up was 4.6 years (range = 1-19 years). The overall conversion rate from iRBD to an overt neurodegenerative syndrome was 6.3% per year, with 73.5% converting after 12-year follow-up. The rate of phenoconversion was significantly increased with abnormal quantitative motor testing [hazard ratio (HR) = 3.16], objective motor examination (HR = 3.03), olfactory deficit (HR = 2.62), mild cognitive impairment (HR = 1.91-2.37), erectile dysfunction (HR = 2.13), motor symptoms (HR = 2.11), an abnormal DAT scan (HR = 1.98), colour vision abnormalities (HR = 1.69), constipation (HR = 1.67), REM atonia loss (HR = 1.54), and age (HR = 1.54). There was no significant predictive value of sex, daytime somnolence, insomnia, restless legs syndrome, sleep apnoea, urinary dysfunction, orthostatic symptoms, depression, anxiety, or hyperechogenicity on substantia nigra ultrasound. Among predictive markers, only cognitive variables were different at baseline between those converting to primary dementia versus parkinsonism. Sample size estimates for definitive neuroprotective trials ranged from 142 to 366 patients per arm. This large multicentre study documents the high phenoconversion rate from iRBD to an overt neurodegenerative syndrome. Our findings provide estimates of the relative predictive value of prodromal markers, which can be used to stratify patients for neuroprotective trials

    Fine-Mapping of SNCA in Rapid Eye Movement Sleep Behavior Disorder and Overt Synucleinopathies

    No full text
    Objective: Rapid eye movement sleep behavior disorder (RBD) is a prodromal synucleinopathy, as >80% will eventually convert to overt synucleinopathy. We performed an in-depth analysis of the SNCA locus to identify RBD-specific risk variants. Methods: Full sequencing and genotyping of SNCA was performed in isolated/idiopathic RBD (iRBD, n = 1,076), Parkinson disease (PD, n = 1,013), dementia with Lewy bodies (DLB, n = 415), and control subjects (n = 6,155). The iRBD cases were diagnosed with RBD prior to neurodegeneration, although some have since converted. A replication cohort from 23andMe of PD patients with probable RBD (pRBD) was also analyzed (n = 1,782 cases; n = 131,250 controls). Adjusted logistic regression models and meta-analyses were performed. Effects on conversion rate were analyzed in 432 RBD patients with available data using Kaplan\u2013Meier survival analysis. Results: A 5\u2032-region SNCA variant (rs10005233) was associated with iRBD (odds ratio [OR] = 1.43, p = 1.1E-08), which was replicated in pRBD. This variant is in linkage disequilibrium (LD) with other 5\u2032 risk variants across the different synucleinopathies. An independent iRBD-specific suggestive association (rs11732740) was detected at the 3\u2032 of SNCA (OR = 1.32, p = 4.7E-04, not statistically significant after Bonferroni correction). Homozygous carriers of both iRBD-specific SNPs were at highly increased risk for iRBD (OR = 5.74, p = 2E-06). The known top PD-associated variant (3\u2032 variant rs356182) had an opposite direction of effect in iRBD compared to PD. Interpretation: There is a distinct pattern of association at the SNCA locus in RBD as compared to PD, with an opposite direction of effect at the 3\u2032 of SNCA. Several 5\u2032 SNCA variants are associated with iRBD and with pRBD in overt synucleinopathies. ANN NEUROL 2020
    corecore