769 research outputs found

    Measurement of Single-top Quark Production with ATLAS Data

    Full text link
    Single-top production processes have been studied using 0.7 fb-1 of data from 7 TeV center-of-mass energy proton-proton collisions collected with the ATLAS detector at the LHC. Single-top is electroweak top production and the standard model includes three production modes. Each contains a Wtb vertex, allowing the possibility of a direct measurement of the CKM matrix element |Vtb|. Single-top could also be sensitive to new physics, such as flavor changing neutral currents or heavy W' bosons. Using cut-based selections, a limit of < 39.1 pb is set for dilepton Wt production and < 26.5 pb for s-channel production. For the t-channel measurement, both cut-based and neural network analyses are performed and the cross-section is measured to be 90 +32 -22 pb, where 65 +28 -19 pb is expected according to standard model.Comment: 3 pages, 2 figures, proceedings for XXXI Physics in Collision, Vancouver, BC Canada, August 28 - September 1, 201

    Installation, commissioning, and testing of the HB650 CM at PIP2IT

    Full text link
    The Proton Improvement Plan-II (PIP-II) is a major upgrade to the Fermilab accelerator complex, featuring a new 800-MeV Superconducting Radio-Frequency (SRF) linear accelerator (LINAC) powering the accelerator complex to provide the world's most intense high-energy neutrino beam. This paper describes the conversion of the PIP-II Injector Test Facility (PIP2IT) cryogenic system into a test stand for PIP-II High-Beta 650 MHz (HB650) cryomodules at Fermilab's Cryomodule Test Facility (CMTF). A description of the associated mechanical, electrical, and controls modifications necessary for testing HB650 cryomodules are provided. The cooldown and warmup requirements, procedures and associated controls logic is described.Comment: 2023 Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC/ICMC

    Journal Staff

    Get PDF
    We present the first measurements of the differential cross section d sigma/dp(T)(gamma) for the production of an isolated photon in association with at least two b-quark jets. The measurements consider photons with rapidities vertical bar y(gamma)vertical bar &lt; 1.0 and transverse momenta 30 &lt; p(T)(gamma) &lt; 200 GeV. The b-quark jets are required to have p(T)(jet) &gt; 15 GeVand vertical bar y(jet)vertical bar &lt; 1.5. The ratio of differential production cross sections for gamma + 2 b-jets to gamma + b-jet as a function of p(T)(gamma) is also presented. The results are based on the proton-antiproton collision data at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next- to- leading order perturbative QCD calculations as well as predictions based on the k(T)- factorization approach and those from the sherpa and pythia Monte Carlo event generators

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    corecore