95 research outputs found

    Transitions Regulating the Timing of Cytokinesis in Embryonic Cells

    Get PDF
    AbstractAnaphase, mitotic exit, and cytokinesis proceed in rapid succession, and while mitotic exit is a requirement for cytokinesis in yeast [1, 2], it may not be a direct requirement for furrow initiation in animal cells [3, 4]. In this report, we physically manipulated the proximity of the mitotic apparatus (MA) to the cell cortex in combination with microinjection of effectors of the spindle checkpoint and CDK1 activity to determine how the initiation of cytokinesis is coupled to the onset of anaphase and mitotic exit. Whereas precocious contact between the MA and the cell surface advanced the onset of cytokinesis into early anaphase A, furrowing could not be advanced prior to the metaphase-anaphase transition. Additionally, while cells arrested in anaphase could be induced to initiate cleavage furrows, cells arrested in metaphase could not. Finally, activation of the mitotic checkpoint in one spindle of a binucleate cell failed to arrest cytokinesis induced by the control spindle but did inhibit the formation of furrows between the arrested MA and the control, nonarrested MA. Our experiments suggest that the competence of the mitotic apparatus to initiate cytokinesis is not dependent on cyclin degradation but does require anaphase-promoting complex (APC) activity and, thus, inactivation of the mitotic checkpoint

    Observations of the neutral gas and dust in the radio galaxy 3C305

    Get PDF
    We present MERLIN and Hubble Space Telescope (HST) observations of the central region of the nearby radio galaxy 3C305 and use them to study the gas and dust in this object. The MERLIN observations are of neutral hydrogen (HI) absorption against the strong non-thermal 20cm continuum seen towards the central 4kpc of 3C305. Our 0.2-arcsec (160 pc) resolution observations show that the HI absorption is highly localised against the south-western radio-emission with column densities 1.9x10^21/cm2. The absorption is broad and red-shifted by 130 km/s relative to the systemic velocity. The HST images in 430nm, 702nm, [OIII] 500.7nm, [FeII] 1.64um and K-band polarization are presented. Evidence is seen for coincidence of the [FeII] emission with the knot at the end of the radio jet, suggesting the presence of shocks. We compare the optical and radio images in order to investigate the relationship between the dust and neutral gas. An unresolved (0.07-arcsec) nucleus is detected in H and K and its properties are consistent with a quasar reddened by A(V)>4. We propose that the absorption arises in a region of neutral gas and dust whose structure is complex but is broadly consistent with an inclined disc encircling, but not covering, the active galactic nucleus. A comparison of the neutral gas observations and previous emission-line observations suggests that both the neutral and ionised gas are undergoing galactic rotation towards the observer in the north-east and away from the observer in the south-west. We propose that the outflow giving rise to the radio emission has a component towards the observer in the north-east and away from the observer in the south-west.Comment: 13 pages, 11 figures, accepted by MNRA

    Petrogenesis of rhyolite-trachyte-basalt composite ignimbrite P1, Gran Canaria, Canary Islands

    Get PDF
    The 14 Ma caldera-forming composite ignimbrite P1 on Gran Canaria (Canary Islands) represents the first voluminous eruption of highly differentiated magmas on top of the basaltic Miocene shield volcano. Compositional zonation of the ignimbrite is the result of vertically changing proportions of four component magmas, which were intensely mixed during eruption: (1) Crystal-poor to highly phyric rhyolite (∼10 km3), (2) sodic trachyandesite through mafic to evolved trachyte (∼6 km3), (3) Na-poor trachyandesite (<1 km3), and (4) basalt zoned from 5.2 to 4.3 wt % MgO (∼26 km3). P1 basalt is composed of two compositionally zoned magma batches, B2 basalt and B3 basalt. B3 basalt is derived from a mantle source depleted in incompatible trace elements compared to the shield basalt source. Basaltic magmas were stored in a reservoir probably underplating the crust, in which zoned B2 basaltic magma formed by mixing of “enriched” (shield) and “depleted” (B3) mafic melts and subsequent crystal fractionation. Evolved magmas formed in a shallow crustal chamber, whereas intermediate magmas formed at both levels. Abundant pyroxenitic to gabbroid cumulates in P1 support crystal fractionation as the major differentiation process. On the basis of major and trace element modeling, we infer two contemporaneous fractional crystallization series: series I from “enriched” shield basalt through Na-poor trachyandesite to rhyolite, and series II from “depleted” P1 basalt through sodic trachyandesite to trachyte. Series II rocks were significantly modified by selective contamination involving feldspar (Na, K, Ba, Eu, Sr), zircon (Zr) and apatite (P, Y, rare earth elements) components; apatite contamination also affected series I Na-poor trachyandesite. Substantial sodium introduction into sodic trachyandesite is the main reason for the different major element evolution of the two series, whereas their different parentage is mainly reflected in the high field strength trace elements. Selective element contamination involved not only rapidly but also slowly diffusing elements as well as different saturation conditions. Contamination processes thus variably involved differential diffusion, partial dissolution of minerals, partial melt migration, and trace mineral incorporation. Magma mixing between trachyte and rhyolite during their simultaneous crystallization in the P1 magma chamber is documented by mutual mineral inclusions but had little effect on the compositional evolution of both magmas. Fe-Ti oxide thermometry yields magmatic temperatures of around 850°C for crystal-poor through crystal-rich rhyolite, ∼815°C for trachyte and ∼850°–900°C for the trachyandesitic magmas. High 1160°C for the basalt magma suggest its intrusion into the P1 magma chamber only shortly before eruption. The lower temperature for trachyte compared to rhyolite and the strong crustal contamination of trachyte and sodic trachyandesite support their residence along the walls of the vertically and laterally zoned P1 magma chamber. The complex magmatic evolution of P1 reflects the transient state of Gran Canaria's mantle source composition and magma plumbing system during the change from basaltic to silicic volcanism. Our results for P1 characterize processes operating during this important transition, which also occurs on other volcanic ocean islands

    Framing the agricultural use of antibiotics and antimicrobial resistance in UK national newspapers and the farming press

    Get PDF
    Despite links to animal disease governance, food and biosecurity, rural studies has neglected consideration of how actors make sense of the use of antibiotics in animal agriculture and the implications for animal and human health. As antimicrobial resistance (AMR) has become a high-profile problem, the contribution of animal antibiotics is frequently mentioned in scientific and policy documents but how different agricultural actors interpret its significance is less clear. This paper offers the first social scientific investigation of contestation and consensus surrounding the use of antibiotics in agriculture and their implications for AMR as mediated through mainstream news-media and farming print media in the UK. Frame analysis of four national newspapers and one farming paper reveals three distinct frames. A ‘system failure’ frame is the most frequently occurring and positions intensive livestock production systems as a key contributor to AMR-related crises in human health. A ‘maintaining the status quo’ frame argues that there is no evidence linking antibiotics in farming to AMR in humans and stresses the necessity of (some) antibiotic use for animal health. A third frame – which is only present in the farming media – highlights a need for voluntary, industry-led action on animal antibiotic use in terms of farmer self-interest. Common to all frames is that the relationship between agricultural use of antibiotics and problems posed by AMR is mostly discussed in terms of the implications for human health as opposed to both human and animal health

    Mitochondrial respiratory states and rate

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Pre- and syn-eruptive degassing and crystallisation processes of the 2010 and 2006 eruptions of Merapi volcano, Indonesia

    Get PDF
    The 2010 eruption of Merapi (VEI 4) was the volcano’s largest since 1872. In contrast to the prolonged and effusive dome-forming eruptions typical of Merapi’s recent activity, the 2010 eruption began explosively, before a new dome was rapidly emplaced. This new dome was subsequently destroyed by explosions, generating pyroclastic density currents (PDCs), predominantly consisting of dark coloured, dense blocks of basaltic andesite dome lava. A shift towards open-vent conditions in the later stages of the eruption culminated in multiple explosions and the generation of PDCs with conspicuous grey scoria and white pumice clasts resulting from sub-plinian convective column collapse. This paper presents geochemical data for melt inclusions and their clinopyroxene hosts extracted from dense dome lava, grey scoria and white pumice generated during the peak of the 2010 eruption. These are compared with clinopyroxene-hosted melt inclusions from scoriaceous dome fragments from the prolonged dome-forming 2006 eruption, to elucidate any relationship between pre-eruptive degassing and crystallisation processes and eruptive style. Secondary ion mass spectrometry analysis of volatiles (H2O, CO2) and light lithophile elements (Li, B, Be) is augmented by electron microprobe analysis of major elements and volatiles (Cl, S, F) in melt inclusions and groundmass glass. Geobarometric analysis shows that the clinopyroxene phenocrysts crystallised at depths of up to 20 km, with the greatest calculated depths associated with phenocrysts from the white pumice. Based on their volatile contents, melt inclusions have re-equilibrated during shallower storage and/or ascent, at depths of ~0.6–9.7 km, where the Merapi magma system is interpreted to be highly interconnected and not formed of discrete magma reservoirs. Melt inclusions enriched in Li show uniform “buffered” Cl concentrations, indicating the presence of an exsolved brine phase. Boron-enriched inclusions also support the presence of a brine phase, which helped to stabilise B in the melt. Calculations based on S concentrations in melt inclusions and groundmass glass require a degassing melt volume of 0.36 km3 in order to produce the mass of SO2 emitted during the 2010 eruption. This volume is approximately an order of magnitude higher than the erupted magma (DRE) volume. The transition between the contrasting eruptive styles in 2010 and 2006 is linked to changes in magmatic flux and changes in degassing style, with the explosive activity in 2010 driven by an influx of deep magma, which overwhelmed the shallower magma system and ascended rapidly, accompanied by closed-system degassing
    corecore