42 research outputs found

    Aquatic Ecosystems are the Most Uncertain but Potentially Largest Source of Methane on Earth

    Full text link
    Atmospheric methane is a potent greenhouse gas that has tripled in concentration since pre-industrial times. The causes of rising methane concentrations are poorly understood given its multiple sources and complex biogeochemistry. Natural and human-made aquatic ecosystems, including wetlands, are potentially the largest single source of methane, but their total emissions relative to other sources have not been assessed. Based on a new synthesis of inventory, remote sensing and modeling efforts, we present a bottom-up estimate of methane emissions from streams and rivers, freshwater lakes and reservoirs, estuaries, coastal wetlands (mangroves, seagrasses, salt-marshes), intertidal flats, aquaculture ponds, continental shelves, along with recently published estimates of global methane emissions from freshwater wetlands, rice paddies, the continental slope and open ocean. Our findings emphasize the high variability of aquatic methane fluxes and a possibly skewed distribution of currently available data, making global estimates sensitive to statistical assumptions. Mean emissions make aquatic ecosystems the largest source of methane globally (53% of total global methane emissions). Median emissions are 42% of the total global methane emissions. We argue that these emissions will likely increase due to urbanization, eutrophication and climate change

    Emissions from thaw ponds largely offset the carbon sink of northern permafrost wetlands

    No full text
    Northern regions have received considerable attention not only because the effects of climate change are amplified at high latitudes but also because this region holds vast amounts of carbon (C) stored in permafrost. These carbon stocks are vulnerable to warming temperatures and increased permafrost thaw and the breakdown and release of soil C in the form of carbon dioxide (CO2) and methane (CH4). The majority of research has focused on quantifying and upscaling the effects of thaw on CO2 and CH4 emissions from terrestrial systems. However, small ponds formed in permafrost wetlands following thawing have been recognized as hotspots for C emissions. Here, we examined the importance of small ponds for C fluxes in two permafrost wetland ecosystems in northern Sweden. Detailed flux estimates of thaw ponds during the growing season show that ponds emit, on average (±SD), 279 ± 415 and 7 ± 11 mmol C m−2 d−1 of CO2 and CH4, respectively. Importantly, addition of pond emissions to the total C budget of the wetland decreases the C sink by ~39%. Our results emphasize the need for integrated research linking C cycling on land and in water in order to make correct assessments of contemporary C balances

    Inland water greenhouse gas budgets for RECCAP2: 2. Regionalization and homogenization of estimates

    No full text
    Inland waters are important sources of the greenhouse gasses (GHGs) carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) to the atmosphere. In the framework of the 2nd phase of the REgional Carbon Cycle Assessment and Processes (RECCAP-2) initiative, we synthesize existing estimates of GHG emissions from streams, rivers, lakes and reservoirs, and homogenize them with regard to underlying global maps of water surface area distribution and the effects of seasonal ice cover. We then produce regionalized estimates of GHG emissions over 10 extensive land regions. According to our synthesis, inland water GHG emissions have a global warming potential of an equivalent emission of 13.5 (9.9-20.1) and 8.3 (5.7-12.7) Pg CO₂-eq. yr⁻¹ at a 20 and 100 year horizon (GWP₂₀ and GWP₁₀₀), respectively. Contributions of CO₂ dominate GWP₁₀₀, with rivers being the largest emitter. For GWP₂₀, lakes and rivers are equally important emitters, and the warming potential of CH₄ is more important than that of CO₂. Contributions from N₂O are about two orders of magnitude lower. Normalized to the area of RECCAP-2 regions, S-America and SE-Asia show the highest emission rates, dominated by riverine CO₂ emissions

    Inland Water Greenhouse Gas Budgets for RECCAP2: 1. State‐of‐the‐Art of Global Scale Assessments

    No full text
    Inland waters are important sources of the greenhouse gasses (GHGs) carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) to the atmosphere. In the framework of the 2nd phase of the REgional Carbon Cycle Assessment and Processes (RECCAP-2) initiative, we review the state of the art in estimating inland water GHG budgets at global scale, which has substantially advanced since the first phase of RECCAP nearly ten years ago. The development of increasingly sophisticated upscaling techniques, including statistical prediction and process based models, allows for spatially explicit estimates which are needed for regionalized assessments of continental GHG budgets such as those established for RECCAP. A few recent estimates also resolve the seasonal and/or interannual variability in inland water GHG emissions. Nonetheless, the global-scale assessment of inland water emissions remains challenging because of limited spatial and temporal coverage of observations and persisting uncertainties in the abundance and distribution of inland water surface areas. To decrease these uncertainties, more empirical work on the contributions of hot-spots and hot-moments to overall inland water GHG emissions is particularly needed

    Long-term warming amplifies shifts in the carbon cycle of experimental ponds

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record.Lakes and ponds cover only about 4% of the Earth’s non-glaciated surface1, yet they represent disproportionately large sources of methane and carbon dioxide2,3,4. Indeed, very small ponds (for example, <0.001 km2) may account for approximately 40% of all CH4 emissions from inland waters5. Understanding how greenhouse gas emissions from aquatic ecosystems will respond to global warming is therefore vital for forecasting biosphere–carbon cycle feedbacks. Here, we present findings on the long-term effects of warming on the fluxes of GHGs and rates of ecosystem metabolism in experimental ponds. We show that shifts in CH4 and CO2 fluxes, and rates of gross primary production and ecosystem respiration, observed in the first year became amplified over seven years of warming. The capacity to absorb CO2 was nearly halved after seven years of warmer conditions. The phenology of greenhouse gas fluxes was also altered, with CO2 drawdown and CH4 emissions peaking one month earlier in the warmed treatments. These findings show that warming can fundamentally alter the carbon balance of small ponds over a number of years, reducing their capacity to sequester CO2 and increasing emissions of CH4; such positive feedbacks could ultimately accelerate climate change.This study was supported by a grant from the Natural Environment Research Council of the UK (NE/H022511/1) awarded to M.T., G.Y.-D. and G.W
    corecore