6 research outputs found
Effects of Widespread Drought-Induced Aspen Mortality on Understory Plants
Forest die-off around the world is expected to increase in coming decades as temperature increases due to climate change. Forest die-off will likely affect understory plant communities, which have substantial influence on regional biological diversity, ecosystem function, and land–atmosphere interactions, but how die-off alters these plant communities is largely unknown. We examined changes in understory plant communities following a widespread, drought-induced die-off of trembling aspen (Populus tremuloides) in the western United States. We assessed shrub and herbaceous cover and volume in quadrats in 55 plots located across a wide range of levels of aspen mortality. We measured species richness and composition of herbaceous plant communities by recording species presence and absence in 12 sets of paired (1 healthy, 1 dying) aspen plots. Although understory composition in healthy and dying stands was heterogeneous across the landscape, shrub abundance, cover, and volume were higher and abundance of herbaceous species, cover, and volume were lower in dying aspen stands. Shrub cover and volume increased from 2009 to 2011 in dying stands, which suggests that shrub growth and expansion is ongoing. Species richness of herbs declined by 23% in dying stands. Composition of herbs differed significantly between dying and healthy stands. Richness of non-native species did not differ between stand types. The understory community in dying aspen stands was not similar to other shrub-dominated plant communities in the region and may constitute a novel community. Our results suggest that changes in understory plant communities as forests die off could be a significant indirect effect of climate change on biological diversity and forest communities