1,301 research outputs found

    The level of occlusion of included bark affects the strength of bifurcations in hazel (Corylus avellana L.)

    Get PDF
    Bark-included junctions in trees are considered a defect as the bark weakens the union between the branches. To more accurately assess this weakening effect, 241 bifurcations from young specimens of hazel (Corylus avellana L.), of which 106 had bark inclusions, were harvested and subjected to rupture tests. Three-point bending of the smaller branches acted as a benchmark for the relative strength of the bifurcations. Bifurcations with included bark failed at higher displacements, and their modulus of rupture was 24% lower than normally formed bifurcations, while stepwise regression showed that the best predictors of strength in these bark-included bifurcations were the diameter ratio and width of the bark inclusion, which explained 16.6% and 8.1% of the variability, respectively. Cup-shaped, bark-included bifurcations where included bark was partially occluded by xylem were found, on average, to be 36% stronger than those, where included bark was situated at the bifurcation apex. These findings show that there are significant gradations in the strength of bark-included bifurcations in juvenile hazel trees that relate directly to the level of occlusion of the bark into the bifurcation. It therefore may be possible to assess the extent of the defect that a bark-included bifurcation represents in a tree by assessing the relative level of occlusion of the included bark

    An assessment of the remodelling of bifurcations in hazel (Corylus avellana L.) in response to bracing, drilling and splitting

    Get PDF
    This paper provides an insight into the ability of bifurcations in hazel trees to remodel themselves after bracing, drilling and splitting. The study uses evidence from field observations and testing the strength of these bifurcations using a universal testing machine alongside wood density tests. This work highlights the importance of the centrally-placed xylem at the apex of hazel forks in supplying tensile strength to the bifurcation. Additionally, it provides evidence that rod-braced bifurcations can atrophy in terms of their tensile strength, growth rate and wood density, suggesting that thigmomorphogenesis plays an important role in the development of a strong bifurcation

    'Fire hardening' spear wood does slightly harden it, but makes it much weaker and more brittle

    Get PDF
    It is usually assumed that 'fire hardening' the tips of spears, as practised by hunter-gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose

    Grasses and the resource availability hypothesis: the importance of silica-based defences

    Get PDF
    The resource availability hypothesis (RAH) predicts that allocation of resources to anti-herbivore defences differs between species according to their growth rate. We tested this hypothesis by assessing the growth and defence investment strategies of 18 grass species and comparing them against vole feeding preferences. In addition, we assessed the effectiveness of silica, the primary defence in many grasses, in influencing vole feeding behaviour. Across species, we found that there was a strong negative relationship between the overall investment in defence and growth rate, thus supporting predictions of the RAH. However, no such relationship was found when assessing the various individual anti-herbivore defences, suggesting that different grass species show significant variation in their relative investment in strategies such as phenolic concentration, silica concentration and leaf toughness. Silica was the most influential defensive factor in determining vole feeding preference. Experimentally induced increases in leaf silica concentration deterred vole feeding in three of the five species tested, and altered feeding preference ranks between species. The strong positive relationship between silica concentration and leaf abrasiveness, when assessed both within and between species, suggests that increased abrasiveness is the mechanism by which silica deters feeding. Although grasses are often considered to be tolerant of herbivore damage rather then defended against it, they do follow predictions of defence allocation strategy based on their growth rates, and this affects the feeding behaviour of generalist grass-feeding herbivores

    Transverse fracture properties of green wood and the anatomy of six temperate tree species

    Get PDF
    © Institute of Chartered Foresters, 2016. All rights reserved. The aim of this study was to investigate the effect of wood anatomy and density on the mechanics of fracture when wood is split in the radial-longitudinal (RL) and tangential-longitudinal (TL) fracture systems. The specific fracture energies (Gf, J m-2) of the trunk wood of six tree species were studied in the green state using double-edge notched tensile tests. The fracture surfaces were examined in both systems using Environmental Scanning Electron Microscopy (ESEM). Wood density and ray characteristics were also measured. The results showed that Gf in RL was greater than TL for five of the six species. In particular, the greatest degree of anisotropy was observed in Quercus robur L., and the lowest in Larix decidua Mill. ESEM micrographs of fractured specimens suggested reasons for the anisotropy and differences across tree species. In the RL system, fractures broke across rays, the walls of which unwound like tracheids in longitudinal-tangential (LT) and longitudinal-radial (LR) failure, producing a rough fracture surface which would absorb energy, whereas in the TL system, fractures often ran alongside rays

    The mechanical properties of wood and the design of Neolithic stone axes

    Get PDF
    Despite the importance of wooden tools for early man, and the development of woodworking in the Mesolithic and Neolithic culture, there has been surprisingly little research on how wood can be worked by stone tools or how wooden handles for composite tools were designed. This paper outlines an approach based on an understanding of the structure and mechanical properties of wood. The cell arrangement in wood makes it far less stiff, strong and tough across the grain, especially tangentially. This makes it hard to harvest wood or break it into lengths because it splits down its centre rather than breaking right across. Fortunately, this also makes wood easy to split along the grain, especially radially through its centre into sections and planks. A model of the splitting process predicted that wood is best split using blunt, broad but smooth wedges, as these would use less energy and would be less likely to get stuck in the wood. The predictions were verified in tests in which hazel coppice poles were split using wedges of contrasting angle, width and surface texture. The results help explain the change from the flaked flint Mesolithic tranchet axes to the broader polished stone Neolithic axe and adze heads. However, further experiments are also needed cutting wood obliquely to test this hypothesis. The splitting model also helps to understand the design of socketed axe hafts. Failure usually occurs when the handles split at the distal and proximal ends of the socket. To prevent this, handles are best designed with the growth rings parallel to the socket, and with an expanded head, especially with flanges on the distal and proximal ends of the socket. These designs are seen in some of the Neolithic axe handles that have been found in Britain, including the Etton, Ehenside and Shulishader axes. More experimental research is needed to understand the optimal way of hafting axe heads

    Structure, attachment properties, and ecological importance of the attachment system of English ivy (Hedera helix)

    Get PDF
    Root climbers such as English ivy (Hedera helix) rely on specialized adventitious roots for attachment, enabling the plants to climb on a wide range of natural and artificial substrates. Despite their importance for the climbing habit, the biomechanical properties of these specialized adventitious roots compared with standard roots and their performance in the attachment to different host species or inert substrates have not been studied. Here organs and tissues involved in the attachment are characterized and their significance in regard to a broader functional and ecological aspect is discussed. Depending on the substrate, the root clusters show different types of failure modes at various frequencies, demonstrating the close interaction between the climber and its substrates. With a Young’s Modulus of 109.2 MPa, the attachment roots are relatively stiff for non-woody roots. The central cylinders of the attachment roots show a high tensile strength of 38 MPa and a very high extensibility of 34%. In host trees naturally co-distributed with English ivy, a ‘balanced’ occurrence of failure of the attachment system of the climber and the bark of the host is found, suggesting a co-evolution of climber and host. Maximum loads of root clusters normalized by the number of roots match those of individually tested attachment roots. In comparison with most subterranean roots the properties and structure of the attachment roots of English ivy show distinct differences. There exist similarities to the properties found for roots of Galium aparine, suggesting a trend in not fully self-supporting plants towards a higher extensibility

    Heritable genetic variation but no local adaptation in a pine-ectomycorrhizal interaction

    Get PDF
    Local adaptation of plants to mycorrhizal fungi helps determine the outcome of mycorrhizal interactions. However, there is comparatively little work exploring the potential for evolution in interactions with ectomycorrhizal fungi, and fewer studies have explored the heritability of mycorrhizal responsiveness, which is required for local adaptation to occur. We set up a reciprocal inoculation experiment using seedlings and soil from four populations of Scots pine (Pinus sylvestris) from Scotland, measuring seedling response to mycorrhizal inoculation after 4 months. We estimated heritability for the response traits and tested for genotype × environment interactions. While we found that ectomycorrhizal responsiveness was highly heritable, we found no evidence that pine populations were locally adapted to fungal communities. Instead, we found a complex suite of interactions between pine population and soil inoculum. Our results suggest that, while Scots pine has the potential to evolve in response to mycorrhizal fungi, evolution in Scotland has not resulted in local adaptation. Long generation times and potential for rapid shifts in fungal communities in response to environmental change may preclude the opportunity for such adaptation in this species, and selection for other factors such as resistance to fungal pathogens may explain the pattern of interactions found
    corecore