1,593 research outputs found

    Preparation and humidity sensitive impedance of spinel ceramic nickel germanate

    Get PDF
    This thesis concerns the formation, sintering and humidity dependent electrical behaviour of the spinel ceramic material nickel germanate, Ni(_2)Ge0(_4).Ni(_2)Ge0(_4) has been prepared via the solid state reaction between NiO and GeO(_2) over a range of temperatures, and characterised using a number of techniques. The sintering behaviour of pressed pellets of Ni(_2)Ge0(_4) has also been investigated, together with a characterisation of the microstructure of the sintered bodies. Substitutional doping of Ni(_2)GeO(_4) with Li as a replacement for Ni is found to promote a high degree of shrinkage in the sintering process, probably due to the formation of a liquid phase. XRD revealed that even when 10 % of the Ni atoms were replaced with Li, no change in the crystal structure could be detected. A C. impedance spectroscopy of Ni(_2)Ge0(_4) samples was used to investigate the humidity sensitivity of this material. Equivalent circuit analysis, based on a network of resistors and constant phase elements, shows that the humidity sensitivity is due to conduction in a surface layer of water, in agreement with the models currently popular in the Uterature. Measurement of the water adsorption isotherm of Ni(_2)Ge0(_4) in pellet form indicates that a single monolayer of water is formed at around 20 %R(_H), with an approximately linear increase in water layer thickness up to around 80 %R(_H), after which capillary condensation causes a large increase in the volume of adsorbed water. The information gained on the thickness of this layer of water has been correlated with the resistance of the layer measured by impedance spectroscopy, and subsequently used to provide evidence for a model of the humidity sensitive conduction. The conduction in the surface layer is thought to be due to dissociation of the water, where the amount of dissociation is exponentially dependent on the humidity

    Legal Framework of Public Intervention in Industrial Disputes

    Get PDF
    This survey was prepared by G. R. Blakey, A.B., LL.B., and Matthew T. Hogan, A.B., LL.B., both of the class of 1960, and John J. Coffey, Thomas A. McNish and Edward O\u27Toole of THE LAWYER\u27S Senior Staff

    Energy rebound as a potential threat to a low-carbon future: findings from a new exergy-based national-level rebound approach

    Get PDF
    150 years ago, Stanley Jevons introduced the concept of energy rebound: that anticipated energy efficiency savings may be “taken back” by behavioural responses. This is an important issue today because, if energy rebound is significant, this would hamper the effectiveness of energy efficiency policies aimed at reducing energy use and associated carbon emissions. However, empirical studies which estimate national energy rebound are rare and, perhaps as a result, rebound is largely ignored in energy-economy models and associated policy. A significant difficulty lies in the components of energy rebound assessed in empirical studies: most examine direct and indirect rebound in the static economy, excluding potentially significant rebound of the longer term structural response of the national economy. In response, we develop a novel exergy-based approach to estimate national energy rebound for the UK and US (1980–2010) and China (1981–2010). Exergy—as “available energy”—allows a consistent, thermodynamic-based metric for national-level energy efficiency. We find large energy rebound in China, suggesting that improvements in China’s energy efficiency may be associated with increased energy consumption (“backfire”). Conversely, we find much lower (partial) energy rebound for the case of the UK and US. These findings support the hypothesis that producer-sided economies (such as China) may exhibit large energy rebound, reducing the effectiveness of energy efficiency, unless other policy measures (e.g., carbon taxes) are implemented. It also raises the prospect we need to deploy renewable energy sources faster than currently planned, if (due to rebound) energy efficiency policies cannot deliver the scale of energy reduction envisaged to meet climate targets

    Military Retention Incentives: Evidence from the Air Force Selective Reenlistment Bonus

    Get PDF
    The limited lateral entry and rigid pay structure for U.S. military personnel present challenges in retaining skilled individuals who have attractive options in the civilian labor market. One tool the services use to address this challenge is the Selective Reenlistment Bonus (SRB), which offers eligible personnel with particular skills a substantial cash bonus upon reenlistment. However, the sequential nature of the bonus offer and reenlistment process limits the ability to adjust manpower quickly, raising interest in research that estimates the effect of the SRB on retention. While this literature has acknowledged challenges including potential endogeneity of bonus levels, attrition, and reenlistment eligibility, many studies do not address these concerns adequately. This paper uses a comprehensive panel data set on Air Force enlisted personnel to estimate the effect of the SRB on retention rates. We exploit variation in bonus levels within skill groups, control for civilian labor market conditions, and model reenlistment eligibility to avoid common assumptions that lead to biased impact estimates. We find substantial heterogeneity in the effect of the bonus, with the largest effects on first-term service members and those whose skills have not historically received a substantial bonus. We also find evidence that the bonus affects the timing of reenlistment decisions in addition to their frequency

    Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation

    Get PDF
    Capital–labour–energy Constant Elasticity of Substitution (CES) production functions and their estimated parameters now form a key part of energy–economy models which inform energy and emissions policy. However, the collation and guidance as to the specification and estimation choices involved with such energy-extended CES functions is disparate. This risks poorly specified and estimated CES functions, with knock-on implications for downstream energy–economic models and climate policy. In response, as a first step, this paper assembles in one place the major considerations involved in the empirical estimation of these CES functions. Discussions of the choices and their implications lead to recommendations for CES empiricists. The extensive bibliography allows those interested to dig deeper into any aspect of the CES parameter estimation process

    Calcineurin regulates innate antifungal immunity in neutrophils

    Get PDF
    Patients taking immunosuppressive drugs, like cyclosporine A (CsA), that inhibit calcineurin are highly susceptible to disseminated fungal infections, although it is unclear how these drugs suppress resistance to these opportunistic pathogens. We show that in a mouse model of disseminated Candida albicans infection, CsA-induced susceptibility to fungal infection maps to the innate immune system. To further define the cell types targeted by CsA, we generated mice with a conditional deletion of calcineurin B (CnB) in neutrophils. These mice displayed markedly decreased resistance to infection with C. albicans, and both CnB-deficient and CsA-treated neutrophils showed a defect in the ex vivo killing of C. albicans. In response to the fungal-derived pathogen-associated molecular pattern zymosan, neutrophils lacking CnB displayed impaired up-regulation of genes (IL-10, Cox2, Egr1, and Egr2) regulated by nuclear factor of activated T cells, the best characterized CnB substrate. This activity was Myd88 independent and was reproduced by stimulation with the ÎČ(1,3) glucan curdlan, indicating that dectin-1, rather than toll-like receptors, is the upstream activator of calcineurin. Our results suggest that disseminated fungal infections seen in CsA-treated patients are not just a general consequence of systemic suppression of adaptive immunity but are, rather, a result of the specific blockade of evolutionarily conserved innate pathways for fungal resistance

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore