114 research outputs found

    Shell Corrections of Superheavy Nuclei in Self-Consistent Calculations

    Get PDF
    Shell corrections to the nuclear binding energy as a measure of shell effects in superheavy nuclei are studied within the self-consistent Skyrme-Hartree-Fock and Relativistic Mean-Field theories. Due to the presence of low-lying proton continuum resulting in a free particle gas, special attention is paid to the treatment of single-particle level density. To cure the pathological behavior of shell correction around the particle threshold, the method based on the Green's function approach has been adopted. It is demonstrated that for the vast majority of Skyrme interactions commonly employed in nuclear structure calculations, the strongest shell stabilization appears for Z=124, and 126, and for N=184. On the other hand, in the relativistic approaches the strongest spherical shell effect appears systematically for Z=120 and N=172. This difference has probably its roots in the spin-orbit potential. We have also shown that, in contrast to shell corrections which are fairly independent on the force, macroscopic energies extracted from self-consistent calculations strongly depend on the actual force parametrisation used. That is, the A and Z dependence of mass surface when extrapolating to unknown superheavy nuclei is prone to significant theoretical uncertainties.Comment: 14 pages REVTeX, 8 eps figures, submitted to Phys. Rev.

    Na+ current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression

    Get PDF
    Key points α‐ and β‐cells express both Nav1.3 and Nav1.7 Na+ channels but in different relative amounts. The differential expression explains the different properties of Na+ currents in α‐ and β‐cells. Nav1.3 is the functionally important Na+ channel α subunit in both α‐ and β‐cells. Islet Nav1.7 channels are locked in an inactive state due to an islet cell‐specific factor. Mouse pancreatic β‐ and α‐cells are equipped with voltage‐gated Na+ currents that inactivate over widely different membrane potentials (half‐maximal inactivation (V0.5) at −100 mV and −50 mV in β‐ and α‐cells, respectively). Single‐cell PCR analyses show that both α‐ and β‐cells have Nav1.3 (Scn3) and Nav1.7 (Scn9a) α subunits, but their relative proportions differ: β‐cells principally express Nav1.7 and α‐cells Nav1.3. In α‐cells, genetically ablating Scn3a reduces the Na+ current by 80%. In β‐cells, knockout of Scn9a lowers the Na+ current by >85%, unveiling a small Scn3a‐dependent component. Glucagon and insulin secretion are inhibited in Scn3a−/− islets but unaffected in Scn9a‐deficient islets. Thus, Nav1.3 is the functionally important Na+ channel α subunit in both α‐ and β‐cells because Nav1.7 is largely inactive at physiological membrane potentials due to its unusually negative voltage dependence of inactivation. Interestingly, the Nav1.7 sequence in brain and islets is identical and yet the V0.5 for inactivation is >30 mV more negative in β‐cells. This may indicate the presence of an intracellular factor that modulates the voltage dependence of inactivation

    A case-control study of peripheral blood mitochondrial DNA copy number and risk of renal cell carcinoma

    Get PDF
    ackground Low mitochondrial DNA (mtDNA) copy number is a common feature of renal cell carcinoma (RCC), and may influence tumor development. Results from a recent case-control study suggest that low mtDNA copy number in peripheral blood may be a marker for increased RCC risk. In an attempt to replicate that finding, we measured mtDNA copy number in peripheral blood DNA from a U.S. population-based case-control study of RCC. Methodology/Principal Findings Relative mtDNA copy number was measured in triplicate by a quantitative real-time PCR assay using DNA extracted from peripheral whole blood. Cases (n = 603) had significantly lower mtDNA copy number than controls (n = 603; medians 0.85, 0.91 respectively; P = 0.0001). In multiple logistic regression analyses, the lowest quartile of mtDNA copy number was associated with a 60% increase in RCC risk relative to the highest quartile (OR = 1.6, 95% CI = 1.1\u20132.2; Ptrend = 0.009). This association remained in analyses restricted to cases treated by surgery alone (OR Q1 = 1.4, 95% CI = 1.0\u20132.1) and to localized tumors (2.0, 1.3\u20132.8). Conclusions/Significance Our findings from this investigation, to our knowledge the largest of its kind, offer important confirmatory evidence that low mtDNA copy number is associated with increased RCC risk. Additional research is needed to assess whether the association is replicable in prospective studies

    Formation of superdense hadronic matter in high energy heavy-ion collisions

    Get PDF
    We present the detail of a newly developed relativistic transport model (ART 1.0) for high energy heavy-ion collisions. Using this model, we first study the general collision dynamics between heavy ions at the AGS energies. We then show that in central collisions there exists a large volume of sufficiently long-lived superdense hadronic matter whose local baryon and energy densities exceed the critical densities for the hadronic matter to quark-gluon plasma transition. The size and lifetime of this matter are found to depend strongly on the equation of state. We also investigate the degree and time scale of thermalization as well as the radial flow during the expansion of the superdense hadronic matter. The flow velocity profile and the temperature of the hadronic matter at freeze-out are extracted. The transverse momentum and rapidity distributions of protons, pions and kaons calculated with and without the mean field are compared with each other and also with the preliminary data from the E866/E802 collaboration to search for experimental observables that are sensitive to the equation of state. It is found that these inclusive, single particle observables depend weakly on the equation of state. The difference between results obtained with and without the nuclear mean field is only about 20\%. The baryon transverse collective flow in the reaction plane is also analyzed. It is shown that both the flow parameter and the strength of the ``bounce-off'' effect are very sensitive to the equation of state. In particular, a soft equation of state with a compressibility of 200 MeV results in an increase of the flow parameter by a factor of 2.5 compared to the cascade case without the mean field. This large effect makes it possible to distinguish the predictions from different theoretical models and to detect the signaturesComment: 55 pages, latex, + 39 figures available upon reques

    Characterization of optical properties and surface roughness profiles: The Casimir force between real materials

    Get PDF
    The Lifshitz theory provides a method to calculate the Casimir force between two flat plates if the frequency dependent dielectric function of the plates is known. In reality any plate is rough and its optical properties are known only to some degree. For high precision experiments the plates must be carefully characterized otherwise the experimental result cannot be compared with the theory or with other experiments. In this chapter we explain why optical properties of interacting materials are important for the Casimir force, how they can be measured, and how one can calculate the force using these properties. The surface roughness can be characterized, for example, with the atomic force microscope images. We introduce the main characteristics of a rough surface that can be extracted from these images, and explain how one can use them to calculate the roughness correction to the force. At small separations this correction becomes large as our experiments show. Finally we discuss the distance upon contact separating two rough surfaces, and explain the importance of this parameter for determination of the absolute separation between bodies.}Comment: 33 pages, 14 figures, to appear in Springer Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Ros

    Associations Between Prediagnostic Concentrations of Circulating Sex Steroid Hormones and Liver Cancer Among Postmenopausal Women

    Get PDF
    Background and Aims: In almost all countries, incidence rates of liver cancer (LC) are 100%-200% higher in males than in females. However, this difference is predominantly driven by hepatocellular carcinoma (HCC), which accounts for 75% of LC cases. Intrahepatic cholangiocarcinoma (ICC) accounts for 12% of cases and has rates only 30% higher in males. Hormones are hypothesized to underlie observed sex differences. We investigated whether prediagnostic circulating hormone and sex hormone binding globulin (SHBG) levels were associated with LC risk, overall and by histology, by leveraging resources from five prospective cohorts. Approach and Results: Seven sex steroid hormones and SHBG were quantitated using gas chromatography/tandem mass spectrometry and competitive electrochemiluminescence immunoassay, respectively, from baseline serum/plasma samples of 191 postmenopausal female LC cases (HCC, n = 83; ICC, n = 56) and 426 controls, matched on sex, cohort, age, race/ethnicity, and blood collection date. Odds ratios (ORs) and 95% confidence intervals (CIs) for associations between a one-unit increase in log2 hormone value (approximate doubling of circulating concentration) and LC were calculated using multivariable-adjusted conditional logistic regression. A doubling in the concentration of 4-androstenedione (4-dione) was associated with a 50% decreased LC risk (OR = 0.50; 95% CI = 0.30-0.82), whereas SHBG was associated with a 31% increased risk (OR = 1.31; 95% CI = 1.05-1.63). Examining histology, a doubling of estradiol was associated with a 40% increased risk of ICC (OR = 1.40; 95% CI = 1.05-1.89), but not HCC (OR = 1.12; 95% CI = 0.81-1.54). Conclusions: This study provides evidence that higher levels of 4-dione may be associated with lower, and SHBG with higher, LC risk in women. However, this study does not support the hypothesis that higher estrogen levels decrease LC risk. Indeed, estradiol may be associated with an increased ICC risk

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations

    Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia

    Get PDF
    Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a rare, chronic B-cell lymphoma with high heritability. We conduct a two-stage genome-wide association study of WM/LPL in 530 unrelated cases and 4362 controls of European ancestry and identify two high-risk loci associated with WM/LPL at 6p25.3 (rs116446171, near EXOC2 and IRF4; OR = 21.14, 95% CI: 14.40–31.03, P = 1.36 × 10−54) and 14q32.13 (rs117410836, near TCL1; OR = 4.90, 95% CI: 3.45–6.96, P = 8.75 × 10−19). Both risk alleles are observed at a low frequency among controls (~2–3%) and occur in excess in affected cases within families. In silico data suggest that rs116446171 may have functional importance, and in functional studies, we demonstrate increased reporter transcription and proliferation in cells transduced with the 6p25.3 risk allele. Although further studies are needed to fully elucidate underlying biological mechanisms, together these loci explain 4% of the familial risk and provide insights into genetic susceptibility to this malignancy

    Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes

    Get PDF
    Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture
    corecore