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Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility
across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we
analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505
controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared
heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-
wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P= 3.27 × 10−9). Most subset
associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly
from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score
analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8),
but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they
reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture.

Leukemia (2022) 36:2835–2844; https://doi.org/10.1038/s41375-022-01711-0

INTRODUCTION
Non-Hodgkin lymphoma (NHL) is the most common hematological
malignancy worldwide, representing 2.8% of all cancers diagnosed

[1]. It is comprised of over fifty subtypes with distinct morphologic,
genetic, and clinical features [2]. Although all lymphomas arise from
lymphocytic clones, they have arrested at different stages of
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development, and the etiology of different subtypes may be similar
in some aspects and quite unique in others. Epidemiologic studies
show that some environmental, medical, and lifestyle factors are
shared across subtypes, but there is also significant heterogeneity in
etiology [3]. For example, human immunodeficiency virus (HIV)
infection is strongly associated with an elevated risk of NHL,
especially AIDS-defining NHL subtypes, such as diffuse large B-cell
lymphoma (DLBCL), whereas it is not associated with risk of other
subtypes, such as mantle cell lymphoma and chronic lymphocytic
leukemia/small lymphocytic lymphoma (CLL/SLL) [4]. Family history
of lymphoid malignancy is a consistent risk factor for all common
NHL subtypes, suggesting a shared genetic component [5]. Stronger
associations have been observed for first degree relatives with the
same NHL subtype, which could reflect some subtype specificity in
risk [6].
To date, genome-wide association studies (GWAS) have

identified over 60 susceptibility loci for specific NHL subtypes,
including CLL, DLBCL, follicular lymphoma (FL), and marginal zone
lymphoma (MZL) [7–18]. These studies suggest some common
genetic susceptibility regions among subtypes. For example,
genetic variants within the human leukocyte antigen (HLA) region
are associated with multiple lymphoma subtypes [7, 9, 13, 18–22].
The HLA-B*08:01 allele, which is associated with other immune-
related diseases [23, 24], is associated with an increased risk of
both DLBCL and MZL [7, 9]. Outside the HLA region, some genetic
loci appear to be shared by NHL subtypes (e.g., chromosome
18q21.33 (BCL2) for CLL and FL) [8, 10], but the extent of
pleiotropy and shared heritability is unclear. Some NHL loci are
also located in regions where variants have been reported for
other lymphoid malignancies, such as Hodgkin lymphoma (HL),
acute lymphoblastic leukemia (ALL), and multiple myeloma (MM).
For example, germline variants at chromosome 9p21.3 (CDKN2A)
have been linked to CLL, MM, and ALL [10, 25–27], SNPs within the
same linkage disequilibrium block at chromosome 8q24 have
been identified for HL, FL, and DLBCL [7, 8, 21], and a SNP at
6p25.3 (EXOC2) was discovered to be associated with both DLBCL
and Waldenström macroglobulinemia [7, 28]. These observations
suggest that there may be shared genetic factors across lymphoid
malignancies.
We sought to explore pleiotropy and shared heritability

among four common NHL subtypes (CLL, DLBCL, FL, and MZL)
and to discover new loci that may be associated with subgroups
of NHL or lymphoid malignancies more generally using data
from GWAS [7–10]. Specifically, we sought to identify new loci
that previously had not been identified for any lymphoma
subtype, perhaps because they failed to reach genome-wide
significance for any one subtype. We also sought to determine
the extent to which different NHL subtypes share the same
underlying genetic susceptibility. Understanding the genetic
architecture of NHL subtypes can provide insight into common
biological mechanisms as well as pathways specific to individual
subtypes.

METHODS
Study population
To explore pleiotropy across NHL subtypes and discover new loci for
NHL susceptibility, we utilized data from eight previous GWAS of
NHL within the InterLymph Consortium (Supplementary Table 1)
[7–10, 13, 18, 29–32]. NHL subtype was harmonized centrally at the
InterLymph Data Coordinating Center according to the hierarchical
classification proposed by the InterLymph Pathology Working Group
based on the World Health Organization (WHO) classification (2008) [33].
Across the eight GWAS, there were 3100 CLL cases, 3857 DLBCL cases,
2847 FL cases, and 825 MZL cases, and 9505 controls of European
ancestry (Supplementary Table 2), providing adequate power to detect
moderate effects. All studies obtained informed consent from partici-
pants, and the study was approved by the appropriate Institutional
Review Boards at each institution [7–10, 13, 18, 29–32].

Genotyping
Genotyping for the eight GWAS was done using Illumina and Affymetrix
arrays, and standard quality control metrics were applied to each GWAS
(Supplementary Table 3) [7–9, 11]. Samples with poor call rates, gender
discordance, abnormal heterozygosity, or of non-European ancestry were
excluded, and SNPs with low call rates or Hardy-Weinberg equilibrium p-
value < 1 × 10−6 were removed. Principal components analysis was used to
evaluate population stratification for each GWAS (Supplementary Fig. 1),
and outliers were removed. Imputation was conducted separately for each
GWAS using the 1000 Genomes Project version 3 (March 2012 release) as
the reference panel. Poorly imputed SNPs (INFO score <0.3) and SNPs with
minor allele frequency <1% were excluded from each study, leaving
roughly ~8.5 million SNPs for analysis. The genotype data for the NCI NHL
GWAS is available at dbGap (phs000802.v2.p1).

Association testing
Association testing was conducted for each NHL subtype and each GWAS
separately using SNPTEST version 2, adjusting for age, sex (except for
UCSF1/NHS), and significant principal components (P < 0.05 in null model
with age and sex). Lambdas for each study are provided in Supplementary
Table 3. For NHL subtype with more than one available GWAS, meta-
analyses were performed using the fixed effects inverse variance method
based on the beta estimates and standard errors from each GWAS. For
each previously published susceptibility SNP, we evaluated the risk across
the four NHL subtypes.

ASSET: discovery and replication of new NHL loci
To explore pleiotropy among four common NHL subtypes and discover
novel loci for unique subsets of NHL subtypes, we utilized Association
analysis based on SubSETs (ASSET) analysis, which explores all possible
combinations of subsets and chooses the subset with the maximum test
statistic (e.g., most significant p-value) [34]. The statistical significance of
the best subset is then adjusted for the optimization (e.g., multiple testing).
For the ASSET analysis, we used the summary statistics from the subtype-
specific analysis or meta-analysis. We limited the analysis to SNPs with info
score (>0.6) and minor allele frequency ≥1% and adjusted for the use of
shared controls within the analysis. For the discovery, SNPs that were at
least 500 kb from the index SNP of an established locus for any NHL
subtype with a P < 1 × 10−6 were considered potentially novel loci.
Four potential novel loci from the ASSET analysis with P < 1 × 10−6

(rs11187157, rs12127426, rs34517439, rs9421684) were taken forward for
replication using TaqMan custom genotyping assays (Applied Biosystems).
All four SNPs were well imputed in the discovery with average info scores
of 0.78–0.99 across the different SNP arrays. Independent replication of the
SNPs was undertaken in 4468 additional cases, including 1404 CLL, 1259
DLBCL, 1351 FL and 454 MZL cases, and 2185 controls of European
ancestry from four different studies (Supplementary Tables 4 and 5).
Genotyping was conducted separately at each study center with
appropriate quality control metrics. For each study, association testing
was conducted for each subtype and for each subset identified from
ASSET, adjusting for age and sex (and Ashkenazi ancestry for MSKCC). The
subtype- and subset-specific results from the replication studies were
meta-analyzed together and with the discovery results using an inverse
variance fixed effects model.

Meta-analyses: NHL and other lymphoid malignancies
To discover additional loci for NHL and lymphoid malignancies, we
conducted a meta-analysis of available GWAS, including the eight NHL
GWAS. For GWAS with multiple NHL subtypes using the same set of
controls (e.g., NCI NHL, UCSF2), association testing was conducted for all
NHL subtypes combined, adjusting for age, sex, and significant principal
components, in a single analysis and then meta-analyzed with the other
GWAS. In addition, we obtained association results from previous GWAS
meta-analyses of MM and HL [35, 36]. The MM results included 1318 cases
and 1480 controls of European ancestry, imputed using the 1000 Genomes
Project reference panel. The HL results included 1816 cases and 7877
controls of European ancestry, imputed using the HapMap Phase III and
1000 Genomes Project reference panels. The NHL, MM, and HL GWAS were
then meta-analyzed using a fixed effects meta-analysis.

Heritability analyses
To estimate the heritability based on common SNPs (both known and
unknown) for individual NHL subtypes and the shared heritability between
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NHL subtypes, we utilized Genome-wide Complex Trait Analysis (GCTA)
[37, 38], which quantifies the contribution of a set of SNPs to the
heritability of a trait on the liability threshold scale. For this analysis, we
used all genotyped SNPs in the NCI NHL GWAS. Additional quality control
metrics were implemented to limit cryptic relatedness, and the analysis
was adjusted for age, sex, and principal components. For interpretability,
we transformed our estimates of heritability on the liability threshold scale
to familial relative risks [39].

Biological pathways
To explore potential underlying biological pathways, we used Data-driven
Expression Prioritized Integration for Complex Traits (DEPICT) [40], which is
a method that systematically prioritizes genes, tissues/cell types, and
pathways for associated genetic loci based on co-regulation and gene
expression data from a large compilation of microarrays. For each of the
four NHL subtypes, we used the most significant independent loci with
P < 1 × 10−5 from the genome-wide summary statistics (e.g., meta-analysis)
and tested for gene, tissue/cell type, and pathway enrichment. We used
Functional element Overlap analysis of the Results of Genome-wide
association study Experiments 2 (FORGE2) [41] to evaluate cell type-
specific enrichment for regulatory elements across different NHL subtypes.
FORGE2 utilizes epigenetic data from ENCODE, BLUEPRINT and Roadmap
and tests for enrichment of overlap with candidate functional elements for
GWAS SNPs compared to a matched set of background SNPs.

Polygenetic risk score analysis
To further explore pleiotropy across NHL subtypes and other lymphoid
malignancies, we generated polygenic risk scores using the established
loci for each lymphoid malignancy and tested for association within the
eight NHL GWAS. A list of the 119 established loci used for generating the
polygenic risk scores can be found in Supplementary Table 6. The
polygenic risk scores were calculated by multiplying the reported beta
coefficient for each known SNP by the allelic dosage for the SNP and then
summing these products across all established SNPs for each subtype or
lymphoid malignancy. Logistic regression was used to test the association
between each polygenic risk score and each of the four NHL subtypes,
adjusting for age, sex, and principal components. Analyses were done
separately by subtype and GWAS and then meta-analyzed using a fixed
effects model.

RESULTS
ASSET: discovery and replication
To evaluate pleiotropy across the four NHL subtypes (CLL, DLBCL,
FL, and MZL) and discover new loci, we conducted an analysis
using ASSET [34] and data from eight genome-wide association
studies, including 10,629 cases, and 9505 controls of European
ancestry. We discovered enrichment for small p-values for the best
subsets at each SNP (Supplementary Fig. 2). This enrichment was
driven largely by the established loci for specific subtypes, and
removal of SNPs within+ /− 500 kb of the established loci of the
four subtypes resulted in substantial attenuation. A total of 17 loci
reached genome-wide significance (P < 5 × 10−8) in the ASSET
analysis, many of which were driven primarily by one subtype and
had been previously reported for that subtype (Supplementary
Table 7). The 10q23.1 locus, which was identified for the subset of
DLBCL, FL, and MZL, was novel (P= 2.40 × 10−8). Three other
promising novel loci with lower significance (P < 1 × 10−6) were
also noted at 1p31.1, 1q44 and 10q23.33.
The 10q23.1 locus and the three other promising novel loci

(P < 1 × 10−6) were taken forward for replication in an indepen-
dent set of 4468 additional cases and 2185 controls of European
ancestry (Supplementary Table 8). Of the four loci, only the
10q23.33 locus (rs11187157) replicated and achieved genome-
wide significance in the combined discovery and replication
analysis for the identified subset (OR= 1.15, 95%CI: 1.10–1.21,
P= 3.27 × 10−9) (Table 1, Fig. 1). Although ASSET identified the
subset containing the three subtypes, CLL, FL, and MZL, as the
most significant subset, the replication results suggested that the
association was largely driven by CLL (OR= 1.27, 95%CI: 1.14–1.40, Ta
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P= 4.36 × 10−6). Associations for FL and MZL were weaker
(OR= 1.06, 95% CI: 0.95–3.19, P= 0.30, and OR= 1.06, 95%C:
0.90–3.41, P= 0.47, respectively). The 10q23.33 locus reached
genome-wide significance for CLL, independently of the other
subtypes, in the combined discovery and replication analysis
(OR= 1.19, 95% CI: 1.13–1.26, P= 2.05 × 10−10), making it a newly
discovered locus for CLL.

Meta-analyses
Although ASSET has greater statistical power if there is hetero-
geneity among the subtypes, it can have less power than a
standard meta-analysis if the associations across subtypes are
homogeneous [34]. To identify additional new loci for NHL that
may have been missed in the ASSET analysis, we conducted a
standard meta-analysis of the four NHL subtypes. We identified 15
loci that reached genome-wide significance using this approach
(Supplementary Table 9), which is slightly less than what we
discovered using ASSET. Thirteen of these loci had been
previously reported for at least one NHL subtype, and two had
been identified earlier through the ASSET analysis but failed to
replicate.
To discover loci for lymphoid malignancies more generally, we

further meta-analyzed our NHL results with summary results for
MM and HL. We discovered 15 genome-wide significant loci in this
larger meta-analysis (Supplementary Table 10). Twelve of these
loci had reached genome-wide significance in our NHL meta-
analysis, and 13 had been previously reported for at least one
lymphoid malignancy. The remaining two loci had been
discovered previously through the ASSET analysis but failed to
replicate (Supplementary Table 8).

Shared heritability
Using GCTA [37, 38], we estimated the heritability based on
common SNPs of each of the four NHL subtypes and NHL overall.
The estimated heritability ranged from 0.24 (95%CI: 0.18–0.30) for
CLL to 0.08 (95% CI: 0–0.19) for MZL with an estimate of 0.10 (95%
CI: 0.07–0.14) for the four NHL subtypes combined (Table 2). We
transformed our heritability estimates to familial relative risks (FRR)

and observed FRRs from 2.47 (95% CI: 2.01–3.00) for CLL to 1.40
(95% CI: 1.15–1.69) for DLBCL. No significant differences in
heritability were observed by sex. Common variants (MAF > 20%)
contributed more to the heritability for CLL than for MZL
(Supplementary Fig. 3). Examination of the genetic correlations
among the four NHL subtypes revealed a broad range of
correlations from 0.20 to 0.86 (Fig. 2a, Supplementary Table 11).
Significant positive correlations were observed between CLL and
MZL (rG= 0.70; SE= 0.33) and between CLL and DLBCL (rG= 0.54;
SE= 0.26).

Biological pathways
To explore common biological pathways across the four NHL
subtypes, we used DEPICT [40] and FORGE2 [41]. Using FORGE2,
we discovered enrichment for CD20+ DNase I hotspots FL and
CLL, but a different subgroup of B-cells displayed enrichment for
DLBCL and MZL (Supplementary Fig. 4), suggesting that distinct
subgroups of regulatory elements from different cell types inform

Fig. 1 Regional association plot of novel locus at chromosome 10q23.33 (rs11187157) for the NHL subset of CLL, FL, and MZL. Shown are
the -log10 association P values from the discovery log-additive genetic model for all SNPs in the region (dots) and rs11187157 (diamond). The
lead SNP is shown with results from both the discovery (dark purple diamond) and combined discovery and replication (light purple
diamond) analyses. Estimated recombination rates from the 1000 Genome Project are plotted in blue. Locations of recombination hotspots
are depicted by peaks corresponding to the rate of recombination. The SNPs surrounding the most significant SNP are color-coded to reflect
their r2 correlation with the lead SNP. Pairwise r2 values are from European ancestry subjects in the 1000 Genomes Project. Genes, position of
exons and direction of exons and direction of transcription from UCSC genome browser are denoted. Plot was generated using LocusZoom.

Table 2. Heritability and familial relative risk estimates for four NHL
subtypes, individually and combined.

hL
2 (95% CI) FRR (95% CI)

NHL Subtype

CLL 0.24 (0.18–0.30) 2.47 (2.01–3.00)

FL 0.16 (0.10–0.22) 1.92 (1.54–2.38)

DLBCL 0.09 (0.04–0.15) 1.40 (1.15–1.69)

MZL 0.08 (0–0.19) 1.46 (0.84–2.43)

NHL Overall 0.10 (0.07–0.14) 1.35 (1.21–1.49)

NHL non-Hodgkin lymphoma, CLL chronic lymphocytic leukemia, FL
follicular lymphoma, DLBCL diffuse large B-cell lymphoma, MZL marginal
zone lymphoma.
hL

2 is the estimated heritability based on the liability scale. FFR is the
estimated familial relative risk.
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NHL etiology. Patterns of gene expression by cell/tissue type also
varied across NHL subtypes (Supplementary Fig. 5). We observed
enrichment for gene expression in multiple cell types and tissues
for CLL, including cells in blood and immune system (FDR < 0.01).
Although we did not find significant cell/tissue enrichment for the
other NHL subtypes, nominal associations were observed for T
lymphocytes for DLBCL and spleen tissue for MZL among others.
When we tested for gene sets using DEPICT, we discovered
enrichment for gene sets related to negative T-cell and thymic
selection for DLBCL (FDR < 0.05) (Supplementary Table 12). No
significant gene set enrichment was seen with CLL, FL, or MZL, but

nominal associations were observed for antigen processing and
presentation, MHC class I receptor activity and apoptosis for CLL.

Pleiotropy across lymphoid malignancies
To explore pleiotropy among NHL subtypes, we examined the
associations between the established loci for individual lymphoid
malignancies and risk of the four NHL subtypes (e.g. CLL, FL,
DLBCL, and MZL). Figure 2b shows a heat plot of the associations
with the sentinel SNP at each established locus based on
directional z-scores. Apart from CLL (P= 0.30), the results for
DLBCL, FL, and MZL showed more loci with the same direction of

Fig. 2 Shared genetic correlations and pleiotropy among four NHL subtypes (CLL, DLBCL, FL, and MZL). a Shared genetic correlations
based on GCTA analysis. b Heat plot of directional Z-scores of associations with sentinel SNPs at established genetic loci for individual
lymphoid malignancies [e.g., chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), marginal
zone lymphoma (MZL), multiple myeloma (MM), acute lymphocytic leukemia (ALL), Hodgkin lymphoma (HL)]. Red color indicates positive
association/correlation, and blue indicates inverse or negative association/correlation.
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effect as previously reported for a different lymphoid malignancy
than would be expected by chance (P= 1.47 × 10−7,
P= 8.98 × 10−5, and P= 0.0002, respectively). All four subtypes
displayed more SNPs with the same direction of effect and
P < 0.05 than expected by chance (P= 0.0002, P= 4.46 × 10−7,
P= 3.26 × 10−7, and P= 0.01 for CLL, DLBCL, FL, and MZL,
respectively). After adjustment for multiple testing, 21 SNPs were
found to be significantly associated with at least one other NHL
subtype in addition to the lymphoid malignancy originally
reported (Supplementary Table 6); however, in most cases, this
was because the SNP was located near an established locus for
that subtype and in linkage disequilibrium. Some potentially novel
associations for future follow-up include chromosome 3p24.1
(rs3806624, EOMES) and FL (OR= 1.15, 95%CI: 1.08–1.22,
P= 2.46 × 10−5) and chromosome 16q23.1 (rs7193541, RFWD3)
and CLL (OR= 1.11, 95%CI: 1.05–1.19, P= 0.0006).
To further explore across lymphoid malignancies, we generated

polygenic risk scores comprised of the established loci for each
lymphoid malignancy (Supplementary Table 6) and tested for
association with risk for the four NHL subtypes (Table 3).
Association testing revealed significant shared genetic risk among
the DLBCL, FL, and MZL subtypes in particular, but no associations
with MM or acute lymphoblastic leukemia. Genome-wide sig-
nificant positive associations (P < 5 × 10−8) were observed for
polygenic risk scores based on the known loci for DLBCL and the
risk of FL and MZL and for polygenic risk scores of CLL, FL, MZL,
and Waldenström macroglobulinemia (WM) and the risk of DLBCL.
The polygenic risk score comprised of HL loci was inversely
associated with FL risk (P= 8.20 × 10−6), largely due to the strong
negative association between the HLA risk alleles and FL risk.

DISCUSSION
In this large international collaborative effort within the Inter-
Lymph Consortium, we provide the first comprehensive evalua-
tion of pleiotropy among four common NHL subtypes. We

demonstrate that there is some pleiotropy and shared heritability
among NHL subtypes; however, each subtype appears to have its
own distinct genetic architecture. None of the genetic loci
identified to date appear to be associated with all four NHL
subtypes. Analyses including other common lymphoid malignan-
cies, MM and HL, further support the hypothesis that genetic
susceptibility varies by subtype.
We identified one novel locus at chromosome 10q23.33

(rs11187157) for a subset of NHL subtypes; however, the
association was strongest and genome-wide significant for CLL
risk. rs11187157 is located approximately 42 kb downstream of the
hematopoietically expressed homeobox (HHEX) gene and 88 kb
upstream of the exocyst complex component 6 (EXOC6) gene. In
animal models, HHEX is an important regulator of hematopoietic
development and is necessary for the maturation and proliferation
of the earliest definitive hematopoietic progenitors [42]. HHEX has
been shown to be critical in lymphopoiesis [43] and differentially
active in naïve B-cells, germinal center B-cells, and memory B-cells
[44]. HHEX is overexpressed in leukemia [45] and lymphoma [44] cell
lines. Studies in acute myeloid leukemia suggest its aberrant
expression may contribute to disease pathogenesis through multi-
ple mechanisms including differentiation blockade and by fostering
epigenetic repression of the CDKN2A tumor suppressor locus [46].
Although rs11187157 may not be the functional genetic variant
responsible for the association, it lies in a DNase I hypersensitive site
for multiple cell lines, including CD20+ (normal B cell), CD14+

(monocytes), mobilized CD34+ hematopoietic progenitor cells,
many HapMap B-cell lymphoblastoid lines, and 3 leukemia cells
lines (CLL, HL-60 and NB4 promyelocytic leukemia). Rs11187157 is
significantly associated with HHEX gene expression in lymphoblas-
toid cell lines [47] and blood [48]. In addition, it resides in a
transcription binding site for many transcription factors, including
IRF4 in B-lymphocyte lymphoblastoid lines, and SNPs in IRF4 have
previously been identified as associated with CLL and HL [15, 49].
Moderate signals for histones H3K4Me1 and H3K27ac in the general
region indicate the possibility for an enhancer role.

Table 3. Risk of four NHL subtypes associated with polygenic risk scores (PRS) for eight lymphoid malignancies.

NHL Subtype

CLL DLBCL FL MZL

OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI)

PRS based on 43 CLL SNPs 2.17 (2.07–2.28) 1.17 (1.12–1.22) 1.12 (1.07–1.17) 1.15 (1.07–1.24)

3.42E-222 1.26E-14 1.01E-06 0.0002

PRS based on 5 DLBCL SNPs 1.33 (1.14-1.54) 2.69 (2.35–3.08) 1.66 (1.42–1.94) 2.10 (1.63–2.72)

0.0002 2.53E-46 2.02E-10 1.25E-08

PRS based on 7 FL SNPs 1.07 (0.98–1.17) 1.28 (1.19–1.39) 2.77 (2.52–3.04) 0.94 (0.81–1.09)

0.12 4.97E-10 2.15E-100 0.41

PRS based on 2 MZL SNPs 1.26 (1.09–1.46) 1.53 (1.34–1.75) 1.39 (1.21–1.61) 2.43 (1.93–3.06)

0.002 7.27E-10 6.48E-06 4.00E-14

PRS based on 2 WM SNPs 1.07 (1.01-1.14) 1.24 (1.18–1.31) 1.12 (1.05–1.19) 1.18 (1.07–1.30)

0.02 3.35E-16 0.0007 0.0009

PRS based on 24 MM SNPs 1.09 (1.02–1.16) 0.98 (0.93–1.04) 1.01 (0.95–1.09) 1.05 (0.94–1.18)

0.01 0.56 0.70 0.38

PRS based on 15 ALL SNPs 0.95 (0.90–1.00) 0.99 (0.94–1.04) 1.01 (0.95–1.06) 1.02 (0.93–1.12)

0.06 0.62 0.87 0.62

PRS based on 21 HL SNPs 1.02 (0.97–1.08) 1.07 (1.02–1.13) 0.88 (0.83–0.93) 1.05 (0.96–1.16)

0.43 0.006 8.20E-06 0.28

Polygenic risk scores (PRS) based on previously reported loci for eight lymphoid malignancies [chronic lymphocytic leukemia (CLL), diffuse large B-cell
lymphoma (DLBCL), follicular lymphoma (FL), marginal zone lymphoma (MZL), Waldenström macroglobulinemia (WM), multiple myeloma (MM), pediatric
acute lymphoblastic leukemia (ALL), and Hodgkin lymphoma (HL)]. Odds ratios, 95% confidence intervals and p-values are provided. Bold indicates
significance after adjustment for multiple testing.
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Our findings of distinctly different patterns of association with
some shared heritability are consistent with observational studies
of environmental and lifestyle risk factors, which suggest some
common risk factors but substantial heterogeneity among NHL
subtypes with some risk factors being subtype-specific [3].
Although 17 loci reached genome-wide significance in our ASSET
analysis and 15 loci were genome-wide significant in our meta-
analysis, most of these were driven primarily by one subtype.
Those with nominally significant contributions by more than one
subtype included 2q13 (ACOXL/BCL2L11), 3p24.1 (EOMES), 3q13.33
(CD86), 6p21.32 (HLA-DQA1), 8q24.21 (PVT1), and 18q21.33 (BCL2).
Although the 2q13 locus had been previously identified for CLL,
the ASSET analysis revealed that the subset including MZL was
significant. The association with MZL may be spurious; however,
BCL2L11, which encodes the pro-apoptotic protein Bim, has been
shown to be deregulated in CLL and MZL [50]. The most
significant SNP at 3q13.33 in our ASSET analysis was rs2681416,
which failed to replicate for both DLBCL and FL in our previous
GWAS [7, 8]. Another SNP at 3q13.33, rs9831894, which is only
modestly correlated with rs2681416 (r2= 0.23), also reached
genome-wide significance (P= 1.93 × 10−9) in our ASSET analysis
with both DLBCL and FL contributing to risk. We recently
replicated the observed association between rs9831894 at
3q13.33 and DLBCL risk in an independent set of cases and
controls [51]. rs9831894 is located near CD86, which encodes a
member of the immunoglobulin superfamily that negatively
regulates T-cell activation by binding to cytotoxic T-lymphocyte-
associated protein 4 and augments B-cell activity [52].
Similar to our study, Law et al. used ASSET to examine pleiotropy

between CLL, multiple myeloma, and Hodgkin lymphoma and
reported one novel locus associated with opposing risk associations
for CLL and Hodgkin lymphoma [53]. We did not observe evidence
for this locus for CLL (rs11715604, P= 0.69) or Hodgkin lymphoma
(rs13075615, r2= 0.81, P= 0.92) in our study; no association was
observed for the other NHL subtypes (Supplementary Table 6). We
were unable to include MM and HL in our ASSET analysis; however,
we were able to conduct a meta-analysis of MM, HL, and four
common NHL subtypes. Our meta-analysis yielded 15 genome-wide
significant loci for lymphoid malignancies. Most loci had previously
been identified for at least one subtype, suggesting little discovery
gain by combining subtypes.
Examination of individual associations with published loci for

lymphoid malignancies showed more SNPs with the same
direction of effect and P < 0.05 than would be expected by
chance for the four NHL subtypes. These findings are consistent
with the study by Went et al. that suggested shared risk loci
between CLL and MM may be enriched for B-cell regulatory
elements [54]. Polygenic risk score analyses with established NHL
loci showed genome-wide significant associations for multiple
NHL subtypes, suggesting significant pleiotropy; however, the
magnitude of the risks varied among subtypes. We observed very
little or no association with risk scores based on the established
loci for ALL, HL, and MM, suggesting more limited pleiotropy with
other lymphoid malignancies.
Heritability analyses revealed a broad range of genetic correla-

tions between NHL subtype pairs ranging from 0.20 to 0.86,
suggesting some shared heritability among subtypes, but sub-
stantial etiologic differences as well. If the genetic etiology of all four
NHL subtypes was highly shared, one might expect all genetic
correlations to be >0.7 or 0.8, but we did not find this to be true. The
positive genetic correlations were statistically significant between
CLL and MZL and between CLL and DLBCL, the latter of which was
previously reported [39]. These findings suggest that there may be
some shared biological pathways for these subtypes. We were
unable to estimate the shared genetic correlation with other
lymphoid malignancies using LD score regression due to relatively
small sample sizes (N < 10,000 cases), but partitioning heritability by
regulatory markers might yield additional insight.

Our analysis was limited to participants of European ancestry,
so the results may not be generalizable to other populations. A
previous GWAS reported an association at chromosome 3q27 and
risk of B-cell lymphoma in Chinese [55]. We observed a nominal
association between rs6773854 and B-cell lymphoma risk in our
meta-analysis of four NHL subtypes (P= 0.01). Our analysis of NHL
was limited to four common B-cell subtypes and may not be
reflective of B-cell lymphoma risk in the general population.
However, these four subtypes comprise the vast majority of NHL
cases, so the bias is likely small. Our study also suggests that
many loci are subtype-specific and so unbiased estimates of
associations for B-cell lymphoma may be of less importance.
Finally, our results assume that these four subtypes are
homogeneous; however, there may etiologically distinct mole-
cular or biologic subtypes in these groups, such as by cell of origin
or MYC status for DLBCL. Further subtyping may reveal additional
heterogeneity in etiology.
In conclusion, our evaluation of the genetic etiology of NHL

demonstrated that there is shared heritability and pleiotropy
among common NHL subtypes (i.e., CLL, FL, DLBCL, MZL); however,
many of the loci identified in our ASSET analysis and B-cell meta-
analyses appeared to be driven primarily by one specific subtype.
Indeed, the novel locus we discovered for a subset of NHL subtypes
at chromosome 10q23.33 was strongly associated with CLL, in
particular. Although additional studies are needed to fully elucidate
the genetic architecture of NHL, our study suggests that genetic
susceptibility to NHL is complex with some overlapping loci but
with substantial heterogeneity among subtypes for common
variants. This is consistent with studies of environment and lifestyle
risk factors and specific NHL subtypes. Future studies are needed to
further clarify which exogenous and genetic risk factors contribute
to the etiology of multiple NHL subtypes, which are subtype-
specific, and what are the underlying biological mechanisms of each
pattern. Further, larger studies will be able to investigate pleiotropy
with rarer variants and rarer NHL subtypes.
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