12 research outputs found
Differences in Oxygen Uptake between Equivalent Resistance Training Protocols: Sets vs. Reps
We examined the energy costs of different resistance training protocols where exercise and recovery periods were equated: 48 total seconds of exercise and 210 seconds of between-set recovery. Two separate investigations were carried out at 65% of a 1 repetition maximum (1RM): back squat (7 men, 3 women) and bench press (9 men). Lifting cadence for concentric and eccentric phases was set at 1.5 sec each with 30 sec between-set recovery periods for the 8 sets, 2 reps protocol (sets) and a 3 min and 30 sec between-set recovery period for the 2 sets, 8 reps protocol (reps). The amount of oxygen consumed during lifting and between-set recovery periods was significantly greater for sets vs. reps protocol for both the back squat (+41%) and bench press (+27%) (p = 0.0001). Moreover, the total aerobic cost including the after-lifting excess post-exercise oxygen consumption (EPOC) was larger for the increased sets protocol for both the squat (+27%, p = 0.01) and bench press (+29%, p = 0.04). Total energy costs - aerobic plus anaerobic, exercise and recovery - were not different among sets or reps protocols. We conclude that a greater volume of oxygen is consumed with a lower repetition, increased number of sets resistance training protocol. We suggest that more recovery periods promote a greater potential for fat oxidation
The genetic architecture of type 2 diabetes
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes
Triplets with a Twist: Ultrafast Intersystem Crossing in a Series of Electron Acceptor Materials Driven by Conformational Disorder
Control over the populations of singlet and triplet excitons
is
key to organic semiconductor technologies. In different contexts,
triplets can represent an energy loss pathway that must be managed
(i.e., solar cells, light-emitting diodes, and lasers) or provide
avenues to improve energy conversion (i.e., photon upconversion and
multiplication systems). A key consideration in the interplay of singlet
and triplet exciton populations in these systems is the rate of intersystem
crossing (ISC). In this work, we design, measure, and model a series
of new electron acceptor molecules and analyze them using a combination
of ultrafast transient absorption and ultrafast broadband photoluminescence
spectroscopies. We demonstrate that intramolecular triplet formation
occurs within several hundred picoseconds in solution and is accelerated
considerably in the solid state. Importantly, ISC occurs with sufficient
rapidity to compete with charge formation in modern organic solar
cells, implicating triplets in intrinsic exciton loss channels in
addition to charge recombination. Density functional theory calculations
reveal that ISC occurs in triplet excited states characterized by
local deviations from orbital π-symmetry associated with rotationally
flexible thiophene rings. In disordered films, structural distortions,
therefore, result in significant increases in spin–orbit coupling,
enabling rapid ISC. We demonstrate the generality of this proposal
in an oligothiophene model system where ISC is symmetry-forbidden
and show that conformational disorder introduced by the formation
of a solvent glass accelerates ISC, outweighing the lower temperature
and increased viscosity. This proposal sheds light on the factors
responsible for facile ISC and provides a simple framework for molecular
control over spin states
The genetic architecture of type 2 diabetes
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes
Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.Erratum in: Scientific Data, volume 5, Article number: 180002, 2018Doi:10.1038/sdata.2018.2</p
The genetic architecture of type 2 diabetes.
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes
Sequence data and association statistics from 12,940 type 2 diabetes cases and controls (vol 4, 170179, 2017)
This corrects the article DOI: 10.1038/sdata.2017.179