33 research outputs found
SARS-CoV-2 N501Y Introductions and Transmissions in Switzerland from Beginning of October 2020 to February 2021-Implementation of Swiss-Wide Diagnostic Screening and Whole Genome Sequencing.
The rapid spread of the SARS-CoV-2 lineages B.1.1.7 (N501Y.V1) throughout the UK, B.1.351 (N501Y.V2) in South Africa, and P.1 (B.1.1.28.1; N501Y.V3) in Brazil has led to the definition of variants of concern (VoCs) and recommendations for lineage specific surveillance. In Switzerland, during the last weeks of December 2020, we established a nationwide screening protocol across multiple laboratories, focusing first on epidemiological and microbiological definitions. In January 2021, we validated and implemented an N501Y-specific PCR to rapidly screen for VoCs, which are then confirmed using amplicon sequencing or whole genome sequencing (WGS). A total of 13,387 VoCs have been identified since the detection of the first Swiss case in October 2020, with 4194 being B.1.1.7, 172 B.1.351, and 7 P.1. The remaining 9014 cases of VoCs have been described without further lineage specification. Overall, all diagnostic centers reported a rapid increase of the percentage of detected VOCs, with a range of 6 to 46% between 25 to 31 of January 2021 increasing towards 41 to 82% between 22 to 28 of February. A total of 739 N501Y positive genomes were analysed and show a broad range of introduction events to Switzerland. In this paper, we describe the nationwide coordination and implementation process across laboratories, public health institutions, and researchers, the first results of our N501Y-specific variant screening, and the phylogenetic analysis of all available WGS data in Switzerland, that together identified the early introduction events and subsequent community spreading of the VoCs
Multiplex qPCR Discriminates Variants of Concern to Enhance Global Surveillance of SARS-CoV-2
With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a spike gene target failure (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69-70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1
Recommended from our members
Future-proofing and maximizing the utility of metadata: The PHA4GE SARS-CoV-2 contextual data specification package.
BACKGROUND: The Public Health Alliance for Genomic Epidemiology (PHA4GE) (https://pha4ge.org) is a global coalition that is actively working to establish consensus standards, document and share best practices, improve the availability of critical bioinformatics tools and resources, and advocate for greater openness, interoperability, accessibility, and reproducibility in public health microbial bioinformatics. In the face of the current pandemic, PHA4GE has identified a need for a fit-for-purpose, open-source SARS-CoV-2 contextual data standard. RESULTS: As such, we have developed a SARS-CoV-2 contextual data specification package based on harmonizable, publicly available community standards. The specification can be implemented via a collection template, as well as an array of protocols and tools to support both the harmonization and submission of sequence data and contextual information to public biorepositories. CONCLUSIONS: Well-structured, rich contextual data add value, promote reuse, and enable aggregation and integration of disparate datasets. Adoption of the proposed standard and practices will better enable interoperability between datasets and systems, improve the consistency and utility of generated data, and ultimately facilitate novel insights and discoveries in SARS-CoV-2 and COVID-19. The package is now supported by the NCBI's BioSample database
Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.
Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited
Using nearly full-genome HIV sequence data improves phylogeny reconstruction in a simulated epidemic:Length of HIV sequence data and phylogeny reconstruction
HIV molecular epidemiology studies analyse viral pol gene sequences due to their availability, but whole genome sequencing allows to use other genes. We aimed to determine what gene(s) provide(s) the best approximation to the real phylogeny by analysing a simulated epidemic (created as part of the PANGEA_HIV project) with a known transmission tree. We sub-sampled a simulated dataset of 4662 sequences into different combinations of genes (gag-pol-env, gag-pol, gag, pol, env and partial pol) and sampling depths (100%, 60%, 20% and 5%), generating 100 replicates for each case. We built maximum-likelihood trees for each combination using RAxML (GTR + Γ), and compared their topologies to the corresponding true tree’s using CompareTree. The accuracy of the trees was significantly proportional to the length of the sequences used, with the gag-pol-env datasets showing the best performance and gag and partial pol sequences showing the worst. The lowest sampling depths (20% and 5%) greatly reduced the accuracy of tree reconstruction and showed high variability among replicates, especially when using the shortest gene datasets. In conclusion, using longer sequences derived from nearly whole genomes will improve the reliability of phylogenetic reconstruction. With low sample coverage, results can be highly variable, particularly when based on short sequences
Automated analysis of phylogenetic clusters
BACKGROUND: As sequence data sets used for the investigation of pathogen transmission patterns increase in size, automated tools and standardized methods for cluster analysis have become necessary. We have developed an automated Cluster Picker which identifies monophyletic clades meeting user-input criteria for bootstrap support and maximum genetic distance within large phylogenetic trees. A second tool, the Cluster Matcher, automates the process of linking genetic data to epidemiological or clinical data, and matches clusters between runs of the Cluster Picker. RESULTS: We explore the effect of different bootstrap and genetic distance thresholds on clusters identified in a data set of publicly available HIV sequences, and compare these results to those of a previously published tool for cluster identification. To demonstrate their utility, we then use the Cluster Picker and Cluster Matcher together to investigate how clusters in the data set changed over time. We find that clusters containing sequences from more than one UK location at the first time point (multiple origin) were significantly more likely to grow than those representing only a single location. CONCLUSIONS: The Cluster Picker and Cluster Matcher can rapidly process phylogenetic trees containing tens of thousands of sequences. Together these tools will facilitate comparisons of pathogen transmission dynamics between studies and countries
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
SARS-CoV-2 variants of interest and concern naming scheme conducive for global discourse
A group convened and led by the Virus Evolution Working Group of the World Health Organization reports on its deliberations and announces a naming scheme that will enable clear communication about SARS-CoV-2 variants of interest and concern.Molecular basis of virus replication, viral pathogenesis and antiviral strategie
The Contribution of Viral Genotype to Plasma Viral Set-Point in HIV Infection
Disease progression in HIV-infected individuals varies greatly, and while the environmental and host factors influencing this variation have been widely investigated, the viral contribution to variation in set-point viral load, a predictor of disease progression, is less clear. Previous studies, using transmission-pairs and analysis of phylogenetic signal in small numbers of individuals, have produced a wide range of viral genetic effect estimates. Here we present a novel application of a population-scale method based in quantitative genetics to estimate the viral genetic effect on set-point viral load in the UK subtype B HIV-1 epidemic, based on a very large data set. Analyzing the initial viral load and associated pol sequence, both taken before anti-retroviral therapy, of 8,483 patients, we estimate the proportion of variance in viral load explained by viral genetic effects to be 5.7% (CI 2.8-8.6%). We also estimated the change in viral load over time due to selection on the virus and environmental effects to be a decline of 0.05 log10 copies/mL/year, in contrast to recent studies which suggested a reported small increase in viral load over the last 20 years might be due to evolutionary changes in the virus. Our results suggest that in the UK epidemic, subtype B has a small but significant viral genetic effect on viral load. By allowing the analysis of large sample sizes, we expect our approach to be applicable to the estimation of the genetic contribution to traits in many organisms