8,054 research outputs found

    Automated Reconstruction of Particle Cascades in High Energy Physics Experiments

    Full text link
    We present a procedure for reconstructing particle cascades from event data measured in a high energy physics experiment. For evaluating the hypothesis of a specific physics process causing the observed data, all possible reconstruction versions of the scattering process are constructed from the final state objects. We describe the procedure as well as examples of physics processes of different complexity studied at hadron-hadron colliders. We estimate the performance by 20 microseconds per reconstructed decay vertex, and 0.6 kByte per reconstructed particle in the decay trees.Comment: 8 pages, 2 figures. Submitted to Computational Science & Discover

    A Development Environment for Visual Physics Analysis

    Full text link
    The Visual Physics Analysis (VISPA) project integrates different aspects of physics analyses into a graphical development environment. It addresses the typical development cycle of (re-)designing, executing and verifying an analysis. The project provides an extendable plug-in mechanism and includes plug-ins for designing the analysis flow, for running the analysis on batch systems, and for browsing the data content. The corresponding plug-ins are based on an object-oriented toolkit for modular data analysis. We introduce the main concepts of the project, describe the technical realization and demonstrate the functionality in example applications

    Searches for exotic new physics in CMS

    Get PDF
    An overview of the CMS search program for exotic new physics is given based on a representative set of models, experimental techniques and final states. Exotic new physics models are briefly reviewed and exotic experimental techniques are introduced before the experimental results based on 8 TeV pp collision data in 9 different final states are discussed

    Measurement of diffraction dissociation cross sections in pp collisions at s\sqrt{s} = 7 TeV

    Full text link
    Measurements of diffractive dissociation cross sections in pp collisions at s√=7  TeV are presented in kinematic regions defined by the masses MX and MY of the two final-state hadronic systems separated by the largest rapidity gap in the event. Differential cross sections are measured as a function of ξX=M2X/s in the region −5.53, log10MX>1.1, and log10MY>1.1, a region dominated by DD. The cross sections integrated over these regions are found to be, respectively, 2.99±0.02(stat)+0.32−0.29(syst)  mb, 1.18±0.02(stat)±0.13(syst)  mb, and 0.58±0.01(stat)+0.13−0.11(syst)  mb, and are used to extract extrapolated total SD and DD cross sections. In addition, the inclusive differential cross section, dσ/dΔηF, for events with a pseudorapidity gap adjacent to the edge of the detector, is measured over ΔηF=8.4 units of pseudorapidity. The results are compared to those of other experiments and to theoretical predictions and found compatible with slowly rising diffractive cross sections as a function of center-of-mass energy

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore