41 research outputs found
Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis
Background
A non-invasive method to grade the severity of steatohepatitis and liver fibrosis is magnetic resonance imaging (MRI) based corrected T1 (cT1). We aimed to identify genetic variants influencing liver cT1 and use genetics to understand mechanisms underlying liver fibroinflammatory disease and its link with other metabolic traits and diseases.
Methods
First, we performed a genome-wide association study (GWAS) in 14,440 Europeans in UK Biobank with liver cT1 measures. Second, we explored the effects of the cT1 variants on liver blood tests, and a range of metabolic traits and diseases. Third, we used Mendelian randomisation to test the causal effects of 24 predominantly metabolic traits on liver cT1 measures.
Results
We identified six independent genetic variants associated with liver cT1 that reached GWAS significance threshold (p<5x10-8). Four of the variants (rs75935921 in SLC30A10, rs13107325 in SLC39A8, rs58542926 in TM6SF2, rs738409 in PNPLA3) were also associated with elevated transaminases and had variable effects on liver fat and other metabolic traits. Insulin resistance, type 2 diabetes, non-alcoholic fatty liver and BMI were causally associated with elevated cT1 whilst favourable adiposity (instrumented by variants associated with higher adiposity but lower risk of cardiometabolic disease and lower liver fat) was found to be protective.
Conclusion
The association between two metal ion transporters and cT1 indicates an important new mechanism in steatohepatitis. Future studies are needed to determine whether interventions targeting the identified transporters might prevent liver disease in at risk individuals
Integration of genetics into a systems model of electrocardiographic traits using humanCVD BeadChip
<p>Background—Electrocardiographic traits are important, substantially heritable determinants of risk of arrhythmias and sudden cardiac death.</p>
<p>Methods and Results—In this study, 3 population-based cohorts (n=10 526) genotyped with the Illumina HumanCVD Beadchip and 4 quantitative electrocardiographic traits (PR interval, QRS axis, QRS duration, and QTc interval) were evaluated for single-nucleotide polymorphism associations. Six gene regions contained single nucleotide polymorphisms associated with these traits at P<10−6, including SCN5A (PR interval and QRS duration), CAV1-CAV2 locus (PR interval), CDKN1A (QRS duration), NOS1AP, KCNH2, and KCNQ1 (QTc interval). Expression quantitative trait loci analyses of top associated single-nucleotide polymorphisms were undertaken in human heart and aortic tissues. NOS1AP, SCN5A, IGFBP3, CYP2C9, and CAV1 showed evidence of differential allelic expression. We modeled the effects of ion channel activity on electrocardiographic parameters, estimating the change in gene expression that would account for our observed associations, thus relating epidemiological observations and expression quantitative trait loci data to a systems model of the ECG.</p>
<p>Conclusions—These association results replicate and refine the mapping of previous genome-wide association study findings for electrocardiographic traits, while the expression analysis and modeling approaches offer supporting evidence for a functional role of some of these loci in cardiac excitation/conduction.</p>
Cholesteryl ester transfer protein (CETP) as a drug target for cardiovascular disease
Despite being studied in clinical trials, CETP inhibitors are not yet an approved treatment for coronary heart disease. Here, by analyzing results from clinical trials and drug target mendelian randomization studies, the authors demonstrate that previous failure of CETP inhibitors are likely compound and not drug target-related.Development of cholesteryl ester transfer protein (CETP) inhibitors for coronary heart disease (CHD) has yet to deliver licensed medicines. To distinguish compound from drug target failure, we compared evidence from clinical trials and drug target Mendelian randomization of CETP protein concentration, comparing this to Mendelian randomization of proprotein convertase subtilisin/kexin type 9 (PCSK9). We show that previous failures of CETP inhibitors are likely compound related, as illustrated by significant degrees of between-compound heterogeneity in effects on lipids, blood pressure, and clinical outcomes observed in trials. On-target CETP inhibition, assessed through Mendelian randomization, is expected to reduce the risk of CHD, heart failure, diabetes, and chronic kidney disease, while increasing the risk of age-related macular degeneration. In contrast, lower PCSK9 concentration is anticipated to decrease the risk of CHD, heart failure, atrial fibrillation, chronic kidney disease, multiple sclerosis, and stroke, while potentially increasing the risk of Alzheimer's disease and asthma. Due to distinct effects on lipoprotein metabolite profiles, joint inhibition of CETP and PCSK9 may provide added benefit. In conclusion, we provide genetic evidence that CETP is an effective target for CHD prevention but with a potential on-target adverse effect on age-related macular degeneration.Clinical epidemiolog
Identifying and visualising multimorbidity and comorbidity patterns in patients in the English National Health Service: a population-based study
Summary.
Background:
Globally, there is a paucity of multimorbidity and comorbidity data, especially for minority ethnic groups and younger people. We estimated the frequency of common disease combinations and identified non-random disease associations for all ages in a multiethnic population.
Methods
In this population-based study, we examined multimorbidity and comorbidity patterns stratified by ethnicity or race, sex, and age for 308 health conditions using electronic health records from individuals included on the Clinical Practice Research Datalink linked with the Hospital Episode Statistics admitted patient care dataset in England. We included individuals who were older than 1 year and who had been registered for at least 1 year in a participating general practice during the study period (between April 1, 2010, and March 31, 2015). We identified the most common combinations of conditions and comorbidities for index conditions. We defined comorbidity as the accumulation of additional conditions to an index condition over an individual's lifetime. We used network analysis to identify conditions that co-occurred more often than expected by chance. We developed online interactive tools to explore multimorbidity and comorbidity patterns overall and by subgroup based on ethnicity, sex, and age.
Findings:
We collected data for 3 872 451 eligible patients, of whom 1 955 700 (50·5%) were women and girls, 1 916 751 (49·5%) were men and boys, 2 666 234 (68·9%) were White, 155 435 (4·0%) were south Asian, and 98 815 (2·6%) were Black. We found that a higher proportion of boys aged 1–9 years (132 506 [47·8%] of 277 158) had two or more diagnosed conditions than did girls in the same age group (106 982 [40·3%] of 265 179), but more women and girls were diagnosed with multimorbidity than were boys aged 10 years and older and men (1 361 232 [80·5%] of 1 690 521 vs 1 161 308 [70·8%] of 1 639 593). White individuals (2 097 536 [78·7%] of 2 666 234) were more likely to be diagnosed with two or more conditions than were Black (59 339 [60·1%] of 98 815) or south Asian individuals (93 617 [60·2%] of 155 435). Depression commonly co-occurred with anxiety, migraine, obesity, atopic conditions, deafness, soft-tissue disorders, and gastrointestinal disorders across all subgroups. Heart failure often co-occurred with hypertension, atrial fibrillation, osteoarthritis, stable angina, myocardial infarction, chronic kidney disease, type 2 diabetes, and chronic obstructive pulmonary disease. Spinal fractures were most strongly non-randomly associated with malignancy in Black individuals, but with osteoporosis in White individuals. Hypertension was most strongly associated with kidney disorders in those aged 20–29 years, but with dyslipidaemia, obesity, and type 2 diabetes in individuals aged 40 years and older. Breast cancer was associated with different comorbidities in individuals from different ethnic groups. Asthma was associated with different comorbidities between males and females. Bipolar disorder was associated with different comorbidities in younger age groups compared with older age groups.
Interpretation:
Our findings and interactive online tools are a resource for: patients and their clinicians, to prevent and detect comorbid conditions; research funders and policy makers, to redesign service provision, training priorities, and guideline development; and biomedical researchers and manufacturers of medicines, to provide leads for research into common or sequential pathways of disease and inform the design of clinical trials
Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity
Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan
Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies
Causal Relationship between Obesity and Vitamin D Status: Bi-Directional Mendelian Randomization Analysis of Multiple Cohorts
M.-L. Lokki työryhmän Genetic Invest Anthropometric Trai jäsen.Peer reviewe
Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification
Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC. Radiolog
Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals
J. Kaprio, S. Ripatti ja M.-L. Lokki työryhmien jäseniä.Peer reviewe
Common genetic variation in a basal promoter element alters DDAH2 expression in endothelial cells
Synthesis of the vasodilator nitric oxide (NO) can be inhibited by the endogenous methylarginines l-NMMA and ADMA. ADMA is elevated in a number of cardiovascular disorders in which NO availability is reduced. Elimination of ADMA from the body occurs primarily by enzymatic breakdown through the action of DDAH, of which two isoforms exist, DDAH1 and DDAH2. In this study we have identified a core promoter region of the DDAH2 gene, and transcription factor sites that play an important role in the regulation of DDAH2 expression. Using PCR-SSCP analysis we also identified six common polymorphisms. One of these polymorphisms (an insertion/deletion at position –871) within the core promoter element influenced basal transcription. The discovery of a functional polymorphism within the DDAH2 promoter suggests that there may be common, individual differences in the ability to metabolise ADMA in vivo, that in turn, might underlie susceptibility to cardiovascular disease