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Abstract 

Background: A non-invasive method to grade the severity of steatohepatitis and liver 

fibrosis is magnetic resonance imaging (MRI) based corrected T1 (cT1). We aimed to 

identify genetic variants influencing liver cT1 and use genetics to understand mechanisms 

underlying liver fibroinflammatory disease and its link with other metabolic traits and 

diseases. 

Methods: First, we performed a genome-wide association study (GWAS) in 14,440 

Europeans in UK Biobank with liver cT1 measures. Second, we explored the effects of the 

cT1 variants on liver blood tests, and a range of metabolic traits and diseases. Third, we 

used Mendelian randomisation to test the causal effects of 24 predominantly metabolic traits 

on liver cT1 measures.  

Results: We identified six independent genetic variants associated with liver cT1 that 

reached GWAS significance threshold (p<5x10-8). Four of the variants (rs75935921 in 

SLC30A10, rs13107325 in SLC39A8, rs58542926 in TM6SF2, rs738409 in PNPLA3) were 

also associated with elevated transaminases and had variable effects on liver fat and other 

metabolic traits. Insulin resistance, type 2 diabetes, non-alcoholic fatty liver and BMI were 

causally associated with elevated cT1 whilst favourable adiposity (instrumented by variants 

associated with higher adiposity but lower risk of cardiometabolic disease and lower liver fat) 

was found to be protective.  

Conclusion: The association between two metal ion transporters and cT1 indicates an 

important new mechanism in steatohepatitis. Future studies are needed to determine 

whether interventions targeting the identified transporters might prevent liver disease in at 

risk individuals. 
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Lay summary:  

We estimated levels of liver inflammation and scarring based on magnetic resonance 

imaging of 14,440 UK Biobank participants. We performed a genetic study and identified 

variations in six genes associated with levels of liver inflammation and scarring. Participants 

with variations in four of these genes also had higher levels of markers of liver cell injury in 

blood samples, further validating their role in liver health. Two identified genes are involved 

in the transport of metal ions in our body. Further investigation of these variations may lead 

to better detection, assessment, and/or treatment of liver inflammation and scarring. 
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Introduction 

Non-alcoholic and alcoholic fatty liver diseases are common in an era of a global obesity 

epidemic and concerning alcohol use.[1,2] They affect up to a third of the adult population 

worldwide and account for the vast majority of chronic liver diseases.[3] However, an important 

paradox in the history of liver fat accumulation exists; despite the large proportion of adults 

affected by simple steatosis (fatty liver), only a relatively small proportion (2.4 - 12.8%) will 

experience significant liver disease or liver related death.[4] 

It is important to identify which individuals are at risk of developing the more inflammatory 

phenotype, steatohepatitis, which is a condition characterised by lipotoxicity and histological 

necroinflammation and is considered to be the main pathophysiological driver of liver fibrosis 

and subsequent disease progression.[5] Steatohepatitis and fibrosis affect approximately one in 

ten middle-aged adults, and can lead to cirrhosis, hepatocellular carcinoma and death.[6] 

A promising, non-invasive measure of steatohepatitis and fibrosis severity is magnetic 

resonance imaging (MRI) based corrected T1 (cT1) (Figure 1A).[7–9] T1 relaxation time reflects 

extracellular fluid which is characteristic of fibrosis and inflammation. The presence of iron, 

which can be determined from T2* maps, has an opposing effect. Combining T2* and T1 values 

can correct for this opposing effect, from which cT1 (in milliseconds) is derived. Higher cT1 

values are associated with both histological liver inflammation and fibrosis, although their 

relative contributions to the score are still unknown.[9,10] cT1 has already been used as a non-

invasive outcome in randomised controlled trials for non-alcoholic steatohepatitis (NASH)[11] 

and is associated with liver disease outcomes.[8] 

Understanding the underlying genetic susceptibility of steatohepatitis and fibrosis may allow 

new insights on the main pathophysiological mechanisms contributing to chronic liver disease 

and help identify potential new drug targets. Genetic studies have so far been limited due to the 

phenotyping challenge. Liver biopsy is an invasive procedure with associated risks, significant 

sampling error and marked interobserver variance,[12] while routinely available liver blood tests 
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such as aminotransferases, despite being useful in the identification of important liver disease 

susceptibility loci, are overall poor predictors of liver disease severity.[13,14] 

Another challenging question is which metabolic traits cause steatohepatitis since treating 

causal factors can help prevent liver disease. Observational associations between 

steatohepatitis and other features of the metabolic syndrome might occur because they share 

common risk factors, rather than one causing the other. Mendelian randomisation (MR) is an 

established epidemiological approach that uses genetic studies to provide insight on 

causality.[15] MR uses genetic variants associated with an exposure (e.g. BMI, LDL cholesterol, 

insulin resistance) to assess their causal effect on an outcome of interest (e.g. cT1, 

steatohepatitis). Genetic markers of a risk factor are largely independent of confounders that 

may otherwise cause bias since genetic variants are randomly allocated before birth. 

Furthermore, the non-modifiable nature of genetic variants provides an analogy to randomised 

trials, in which exposure is allocated randomly and is non-modifiable by subsequent 

disease.[16] 

In this study, we aimed to (i) identify genetic variants influencing liver cT1 (ii) identify the effect 

of liver cT1 variants on other metabolic traits, (iii) investigate which metabolic traits are 

genetically correlated with cT1 measures and (iv) use MR to investigate whether 24 metabolic 

traits and conditions are causally associated with cT1. We performed the first genome-wide 

association study (GWAS) on MRI liver cT1 in 14,440 European individuals from UK Biobank. 

Finally, to investigate whether there are shared variants between liver cT1 and liver fat, we 

carried out a GWAS on MRI determined liver proton density fat fraction (PDFF) in the same 

cohort. 
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Methods 

UK Biobank participants  

UK Biobank is a prospective cohort study that consists of over 500,000 individuals aged 37–73 

years (99.5% were between 40 and 69 years of age) who were recruited between 2006 and 

2010 from across the U.K.[17] This research has been conducted using the data obtained via 

UK Biobank Access Application number 9914 and 31037. The UK Biobank has approval from 

the North West Multi-Centre Research Ethics Committee (ref: 11/NW/0382) and obtained 

written informed consent from all participants prior to the study.  

Imaging protocol and analysis 

Invitation to the UK Biobank imaging study is based only on proximity to one of the main 

imaging sites. Participants were invited and scanned at the UK Biobank Imaging Centre in 

Cheadle (UK) using a Siemens 1.5T Magnetom Aera as previously described.[18,19] Medical 

conditions were not taken into account except from those which would exclude the participant 

from being able to have an MRI (e.g. if they had an implanted defibrillator or metal implant).  

Characterisation of cT1 in the UK Biobank cohort, alongside normal values and inter and intra-

reader variability have previously been published.[18] Briefly, two sequences were used to 

acquire data: a Shortened Modified Look Locker Inversion (ShMOLLI) to quantify liver T1, and a 

multiecho-spoiled gradient-echo, to quantify liver iron and fat (PDFF). In both cases, data was 

acquired as a single transverse slice captured through the centre of the liver superior to the 

porta hepatis. Acquisition was performed in end-expiration breath-hold and without the aid of 

any contrast agent injection. The slice-based methodology has previously been shown to 

correlate well with histology and predict liver outcomes.[7,9] 

The MRI sequence is part of the LiverMultiScan© protocol from Perspectum Diagnostics (UK) 

which forms part of the UK Biobank abdominal imaging protocol.[18,20,21] The data was 

analysed by a team of trained analysts blinded to any participant variables, using 
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LiverMultiScan© Discover 4.0 software. This software creates T2*, cT1 and PDFF maps from the 

image data, and produces an automated delineation of the liver excluding its major vessels 

within the image slice using a deep learning approach which has previously been published;[22] 

The median value from this delineation on the T2* map is converted to an iron value,[23] which 

is used with the ShMOLLI data to derive the cT1 map.[24] All values reported in this work are 

the median, for each metric, of all usable voxels in the liver within the image slice. T1 relaxation 

time reflects extracellular fluid and is characteristic of fibrosis and inflammation. The presence of 

iron, which can be determined from T2* maps, has an opposing effect on the T1, and algorithms 

have been formed to correct for the resulting bias.[9] All processed data are available through 

application to UK Biobank. Figure 1A illustrates the 3 MRI scans with different levels of cT1 in 3 

participants.  

From an initial collection of 20386 imaging sessions (each of a unique individual), 691 did not 

have all necessary image data, 1354 were run with an early flawed protocol, 1717 did not 

correctly trigger the sequence, 126 had more than half of their liver excluded due to poor model 

fitting and motion artefacts, leaving 16498 for human quality control. 

From these a further 959 were removed through a combination of fat/water swaps, erroneous 

overcorrection of iron, misplacement of the image slice, segmentation failure, field artefacts, and 

cysts within the image slice preventing reasonable quantification of parenchyma leaving 15539 

participants. 

Genetic Data  

Protocols for the participant genotyping, data collection, and quality control have previously 

been described in detail.[17] Briefly, participants were genotyped using one of two purpose-

designed arrays (UK BiLEVE Axiom Array (n= 50,520) and UK Biobank Axiom Array (n = 

438,692)) with 95% marker overlap. We excluded individuals who were identified by UK 

Biobank as outliers based on either genotyping missingness rate or heterogeneity, or whose sex 

inferred from the genotypes did not match their self-reported sex. We removed individuals with a 
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missingness > 5% across variants which passed our quality control procedure. We used the 

latest release which included imputed data using two reference panels: a combined UK10K and 

1000 Genomes panel and the Haplotype Reference Consortium (HRC) panel. We limited our 

analysis to genetic variants with a minimum minor allele frequency (MAF) > 1% and imputation 

quality score (INFO) > 0.3.  

To define “white European” ancestry participants, we first used data from 1000 genomes 

samples to generate ancestry informative principal components (PCs). We then used these PCs 

in UK Biobank participants and employed K-means clustering to identify samples clustered with 

the three main 1000 genomes populations (European, African, and South Asian). Those 

clustered with the 1000 genomes’ “European” cluster were classified as having European 

ancestry.  

In total, after image analysis and quality control steps, liver cT1 and PDFF measures were 

available for 14,440 white European individuals who also had genetic data available and were 

classified as white European.  

Genome-wide association analysis  

We used BOLT-LMM v2.3.4 to conduct a linear mixed model GWAS which accounts for 

population structure and relatedness. We increased our power by including all related 

individuals of European descent (n = 14,440). The relatedness matrix was computed using 

common (MAF>5%) genotyped variants that passed quality control in all 106 batches and were 

present on both genotyping arrays. Prior to association testing, liver cT1 and PDFF were 

inverse-normal transformed. We used age, sex, centre and genotyping array as covariates in 

the model.  

Sensitivity Analyses 

We performed 6 sensitivity analyses (Supplementary Table 1). We carried out GWASs and 

adjusted for (i) BMI and (ii) alcohol units consumed. We derived alcohol units per day variable in 
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UK Biobank as previously suggested.[25] In summary, we considered 1.5 units for a glass of 

wine, 2.8 units for a pint of beer or cider and 1.5 units for other alcoholic drinks. We calculated 

one unit per week for individuals reported drinking alcohol at least once a week and one unit per 

month for individuals reporting less frequent drinking. We further adjusted for (iii) MRI 

determined liver fat and (iv) liver iron to rule out the confounding effects of these two traits in our 

image processing pipeline. Finally, we carried out GWASs in (v) males and (vi) females 

separately to detect sex-specific associations.  

Association of cT1 variants with liver biomarkers and metabolic traits and diseases.  

To further understand the role of each cT1 variants in the pathophysiology of liver disease, and 

also as a positive control, we tested the association between each variant and liver biomarkers 

in UK Biobank white European participants. The liver biomarkers include liver enzymes (ALT, 

AST, GGT, ALP in up to 378,821 individuals), MRI derived liver PDFF (n = 14,440), and MRI 

derived liver iron (to understand if the correction of T1 measures for liver iron content has 

caused any bias; n = 14,440). The protocols for the derivation of MRI PDFF and liver iron have 

previously been published.[20,21] To validate the associations with transaminases in a non-UK 

Biobank dataset, we looked up the effects of cT1 variants in an existing GWAS of ALT and AST 

levels in up to 61,089 individuals.[26] 

To understand the effect of cT1 variants on cardiometabolic traits and diseases, we tested their 

associations with 15 predominantly metabolic traits including BMI, HDL-cholesterol (HDL), LDL-

cholesterol (LDL), triglycerides, systolic blood pressure, diastolic blood pressure, type 2 

diabetes, and coronary artery disease in up to n = 379,308 white European UK Biobank 

participants.  

LD Score regression and cross-trait genetic correlation analysis 

We used LD Hub to conduct linkage disequilibrium (LD) score regression and heritability 

analysis. LD Hub is a centralized database of summary level GWAS for > 500 diseases 
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and traits from publicly available resources/consortia and uses a web interface that 

automates LD score regression, heritability and cross-trait genetic correlation analysis 

pipeline.[27] We ran heritability analysis as well as genetic correlation analysis across 

120 potentially relevant traits. SNP-based heritability (h2
SNP) is the proportion of total 

variation in liver cT1 measures due to the additive genetic variation between individuals 

in our study population. 

Liver cirrhosis variants 

To investigate the effect of liver cirrhosis variants on cT1 measures, and also as a positive 

control, we used variants associated with all-cause cirrhosis including rs2642438 (in or near 

MARC1), rs72613567 (HSD17B13), rs58542926 (TM6SF2), rs738409 (PNPLA3), rs1800562 

(HFE), and rs28929474 (SERPINA).[28]  

Mendelian randomisation 

We investigated the potential causal associations between 24 predominantly metabolic traits on 

cT1 using two-sample Mendelian randomisation analysis.[29] We used the inverse variance 

weighted approach (IVW) as our main analysis, and MR-Egger and penalised weighted median 

as sensitivity analyses in order to detect unidentified pleiotropy of our genetic instruments. 

Genetic instruments were constructed by using the independent genome-wide significant 

genetic variants (R2 < 0.1) of the exposure of interest from previous GWASs. For more 

information on Mendelian Randomisation and genetic instrument selection please see the 

Supplementary Material. 
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Results 

The characteristics of liver cT1 cohort.  

In our discovery cohort, median age was 57 years (interquartile range (IQR) 50 - 62) for males 

and 55 years (IQR 48 - 60) for females. The median liver cT1 was 694 milliseconds (ms; IQR 

662 - 730) in males and 676ms (IQR: 647 - 710) in females (Supplementary Figure 1). 5.3% of 

males (299 / 5,595) and 2.6% of females (169 / 6,455) had values above 800ms, a threshold 

that has been set in current clinical trials as a cut-off for steatohepatitis,[30] and is under 

evaluation by the FDA and European Medicines Agency as a diagnostic enrichment biomarker 

for non-alcoholic steatohepatitis. Baseline characteristics were comparable to the rest of the UK 

Biobank cohort who did not participate in the imaging study except BMI, waist circumference 

and diabetes prevalence which were lower in both males and females in the liver cT1 cohort 

compared to the rest of UK Biobank (Table 1). Although invitation was not based on any 

medical information, MRI exclusion criteria (e.g. metal or electrical implants, surgery in six 

weeks prior to appointment, severe hearing or breathing problems) as well as the imaging site 

location (Cheadle, UK) may have contributed to a slightly healthier cohort.[21] 

Genetic variants in six loci show association with liver cT1. 

In our GWAS of liver cT1 in individuals of European ancestry variants in six independent loci 

(Table 2) reached genome wide significance. Genomic inflation was low (λGC = 1.006, 

Supplementary Figure 2). We observed the strongest association with a missense variant, 

rs13107325, located in an exon of SLC39A8 (Figure 1B). The minor allele (T; allele frequency 

7%) of rs13107325 was associated with 0.54 standard deviation (SD) increase in cT1 (p = 1.2 x 

10-133). The mean cT1 was 692ms in individuals with no risk allele, 727ms in heterozygotes, and 

772ms in risk allele homozygotes (Supplementary Figure 3).  

Other independent variants included an intronic variant (rs759359281-CA > C) in SLC30A10 (p 

= 2.8 x 10-8), a missense variant (rs111723834-G > A) in PCK2 (p = 3.0 x 10-11), a missense 
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variant (rs4820268-A > G) in TMPRSS6 (p = 1.6 x 10-9), and two known cirrhosis variants 

(rs58542926-A > G) in TM6SF2 (p = 1.4 x 10-8) and (rs738409-C > G) in PNPLA3 (p = 9.6 x 10-

13). The six variants together explained 5.38% of variation in cT1 measures in white European 

UK Biobank participants with SLC39A8 variant explaining most of this variation (3.95%) (Table 

2). We estimated the SNP-based heritability (h2
SNP) of liver cT1 to be 20%. This is higher than 

the heritability estimated for conditions and traits such as coronary artery disease (7%),[31] 

eczema (7%),[32] body fat % (10%)[33] and transferrin (16%), but lower than non-alcoholic fatty 

liver disease (NAFLD) (22-34%).[34] 

We did not detect any sex-specific associations and the effects were similar between men and 

women (Supplementary Table 1). Sensitivity analyses that further controlled for alcohol units 

intake and BMI did not identify any additional signals and did not significantly change the effect 

size (Supplementary Table 1). Sensitivity analyses that controlled for liver PDFF removed the 

effects of rs58542926 in TM6SF2 and rs738409 in PNPLA3, suggesting that the effects of these 

variants on cT1 measures are mediated through liver fat accumulation (Supplementary Table 

1). The cT1 increasing allele (G) at TMPRSS6-rs4820268 is associated with lower plasma iron 

levels and lower liver iron.[21] The effect of this variant on cT1 may be due to its effect on liver 

iron concentration since iron has an opposing effect to T1 relaxation time. However, sensitivity 

analyses that controlled for liver iron only slightly attenuated its effect on cT1 (from beta = 

0.066, p = 2 x 10-9 to beta = 0.054, p = 7 x 10-7) suggesting that other mechanisms are involved 

and that this is a true signal.  

Genetic variants in four loci show association with liver MRI determined PDFF. 

In our GWAS of liver PDFF in 14,440 individuals of European ancestry missense variants in four 

independent loci reached genome wide significance (rs1260326-C > T in GCKR, p = 3.9 x 10 -8, 

rs58542926-C > T in TM6SF2, p = 6.3 x 10-37 , rs429358-C > T in APOE, p = 5.6 x 10-11, 

rs738409-C > G in PNPLA3, p = 5.4 x 10-66 (Supplementary Table 2, Supplementary Figure 
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4). Genomic inflation was low (λGC = 1.04). Two of the four variants (rs738409 in PNPLA3, 

rs58542926 in TM6SF2) were shared between PDFF and cT1 in our GWASs. 

Four of the cT1 variants are associated with higher levels of aminotransferases and 

demonstrate variable effects on metabolic traits and diseases. 

To validate these variants and further understand their role in other metabolic traits and 

diseases, we investigated their association with liver blood tests, MRI determined liver iron and 

liver PDFF, lipids, blood pressure, BMI and cardiometabolic disease outcomes (Figure 2, 

Supplementary Table 3). cT1-increasing alleles at four variants (in SLC30A10, SLC39A8, 

TM6SF2, and PNPLA3) were associated with higher ALT and AST (all with p-values < 2 x 10-5) 

and higher risk of type 2 diabetes (all with p < 0.002, except the SLC30A10 variant). None of 

cT1 variants were associated with cardiovascular disease risk, whilst their effects on other 

metabolic traits including lipids and blood pressure were variable (Figure 2). Among the novel 

identified and replicated variants (rs759359281 in SLC30A10, and rs13107325 in SLC39A8), 

only the latter was available in a non-UK Biobank cohort with available liver blood tests. The 

cT1-increasing allele in rs13107325 showed similar direction of effect on ALT (n = 46,316, beta 

= 0.01, p = 0.27) and AST (n = 39,015, beta = 0.014, p = 0.0005) levels in an independent 

cohort (Supplementary Table 4).[26] 

Liver cT1 measures correlate genetically with components of metabolic syndrome. 

We calculated genetic correlations using the GWAS summary statistics (120 predominantly 

metabolic traits/diseases) in LD score regression analysis (Figure 3, Supplementary Table 5). 

Measures of insulin resistance, triglycerides, VLDL, type 2 diabetes, coronary artery disease, 

body fat percentage, BMI and waist-to-hip ratio were genetically positively correlated with liver 

cT1 measures after correcting p-values for multiple testing (false discovery rate (FDR) < 0.05). 

The most genetically correlated traits were homeostatic model for insulin resistance (HOMA IR, 

rG= 0.53, P=0.0004) and mean diameter of VLDL particles (rG=0.52, P=0.0004), whereas the 
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strongest inverse correlation was seen with total cholesterol in very large HDL (rG=-0.62, 

P=0.04). 

Association of liver cirrhosis variants with liver cT1 

We investigated the effects of all-cause cirrhosis risk variants on cT1 values. Among six variants 

associated with all-cause cirrhosis in a recent GWAS of 5,770 cases and 572,850 controls [28], 

four variants (those in or near MARC1, HSD17B13, TM6SF2 and PNPLA3) demonstrated 

associations with cT1 (Table 3) where alleles associated with higher risk of liver cirrhosis were 

also associated with higher cT1. The HFE haemochromatosis risk allele (in rs1800562) was 

inversely associated with cT1, however this is to be expected since cT1 measures are corrected 

for liver iron content. Consistently, this association became remarkably attenuated (from beta = 

-0.11, p = 8 x 10-7 to beta = -0.055, p = 0.02) in our sensitivity analysis correcting for liver iron 

content. In the GWAS of all-cause cirrhosis, the effect of a1-antitrypsin risk variant (rs28929474 

in SERPINA1) was very weak (p = 0.01) and present only when a recessive model was carried 

out (Table 3).[28] We did not have any risk allele homozygotes in our liver cT1 cohort and 

therefore could not perform a recessive model of associations with cT1. 

Mendelian randomisation analysis provides genetic evidence that non-alcoholic fatty 

liver, insulin resistance and obesity causally elevate liver cT1.   

Demonstrating causality using observational studies can be challenging due to the presence of 

confounders such as other features of metabolic syndrome and behaviours including smoking 

and alcohol intake.[35] In UK Biobank, we detected a strong correlation between cT1 and BMI 

(r2: 0.36, p = 5 x 10-324) and also between cT1 and MRI determined liver fat PDFF (r2: 0.62, p = 5 

x 10-324), and a weak but significant inverse correlation with liver iron (r2: -0.069, p = 6.6 x 10-18), 

which is to be expected since cT1 measures were corrected for liver iron (Supplementary 

Figure 5). We used genetic methods (Mendelian randomisation, Figure 4) that are generally 

free of biases such as confounding and reverse causation to examine the potential causal effect 
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of metabolic traits on liver cT1. We found evidence of a causal association between insulin 

resistance (IVW p = 0.0001), non-alcoholic fatty liver (IVW P = 0.01), type 2 diabetes (IVW p = 

0.004), BMI (IVW p = 0.002) and higher cT1. We also found evidence for a protective role of 

favourable adiposity variants (variants associated with higher adiposity but lower risk of 

cardiometabolic diseases and lower ectopic fat)[36] and cT1 (IVW p = 0.01) (Supplementary 

Table 6). Our analyses were robust across a range of sensitivity analyses (Supplementary 

Table 6). 
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Discussion 

We identified associations between six independent genetic variants and MRI-based liver cT1, a 

non-invasive marker of liver inflammation and fibrosis, in 14,440 participants in UK Biobank. 

These include 5 missense variants (in SLC39A8, PCK2, TM6SF2, PNPLA3, and TMPRSS6) 

and one intronic variant (in SLC30A10). The cT1-increasing alleles in four genes (SLC39A8, 

SLC30A10, PNPLA3, and TM6SF2) were also associated with higher AST (n = 360,731) and 

higher ALT (n = 361,940) in UK Biobank and also in an independent GWAS of liver enzymes 

(except for SLC30A10 and TM6SF2 where data was not available).[26] SLC30A10 and 

SLC39A8 encode metal ion transporters and PNPLA3 and TM6SF2 are known genes 

associated with fatty liver and cirrhosis. 

cT1 is a continuous trait, and analysed as such in our GWAS in line with other continuous traits 

such as blood pressure, BMI and height.[37–39] In some earlier publications, cT1 was reported 

using the Liver Inflammation and Fibrosis (LIF) score (Supplementary Material). The LIF score 

is a tri-linear mapping of cT1 onto a continuous scale from 0 to 4 based on the association of 

cT1 with histological fibrosis[9]. LIF categories were defined as having no (LIF <1), mild (LIF 1–

1.99), moderate (LIF 2–2.99), or severe (LIF 3–4) liver disease.[8] The LIF cut-off of 1.4 had a 

sensitivity of 91% and a specificity of 52% for the diagnosis of NASH versus steatosis (AUROC 

= 0.80), and corresponds to a cT1 value of 780ms; a slightly higher cutoff of 800ms is used in 

clinical trials[30] and is under evaluation by the FDA and European Medicines Agency as a 

diagnostic enrichment biomarker for non-alcoholic steatohepatitis;[9,40] The LIF score is no 

longer used since the medical and MRI physics community is more familiar with T1 for the 

assessment of inflammation and fibrosis across all specialties including cardiology and 

neurology.[11,18,41–45] In this GWAS study, the cT1 values reported are standardised across 

the MRI scanner model and field strength and show very high repeatability and 

reproducibility.[46]  
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The missense variant (rs13107325-C > T) in SLC39A8 is predicted to be deleterious in both 

Polyphen-2 and SIFT, and is associated with lower expression of SLC39A8 in human liver.[47] 

SLC39A8 encodes ZIP8 which has important roles in inflammation and immunity, and is a 

negative regulator of the NF-kB pathway.[48] ZIP8 is a divalent cation importer capable of 

transporting zinc, manganese, iron, cadmium and selinate; the substitution of C for T allele 

impairs the cellular uptake of metals by this protein.[49] It is not known which metal is involved 

in liver pathogenicity but there is evidence that hepatic ZIP8 regulates manganese metabolism 

in the liver, a metal ion that is hepatotoxic at high levels.[50] Zinc and selenium also have 

important roles in liver cellular injury, oxidative stress and dysregulated inflammation; dietary 

supplementation of both has shown benefit in animal models of liver disease.[51,52]  

The pathogenic role of SLC39A8 in liver inflammation and fibrosis is supported by studies in 

mice which provide mechanistic evidence for the critical role of ZIP8 in liver disease. Liu et al 

[53] used two mouse models to study the function of SLC39A8 in the liver. In the first model, 

they studied the chronic effect of SLC39A8 knockdown. The SLC39A8(neo/neo) homozygous 

mice died before or immediately after birth. The SLC39A8(+/neo) heterozygous mice had 

moderate ZIP8 deficiency which led to disruption of normal hepatocellular architecture, necrosis, 

inflammation, fibrosis and development of liver tumours with histopathological features 

consistent with hepatocellular neoplasms.[53] In the second model, they studied liver specific 

SLC39A8 knockdown by adenovirus delivered shRNA and demonstrated that liver damage in 

the chronic model is not due to some extrahepatic process. Liver specific ZIP8 downregulation 

for seven days resulted in substantial hepatomegaly, inflammation, proliferation, oxidative 

stress, liver injury and cell death.[53]  

The intronic variant in SLC30A10, a gene which codes a predominantly manganese metal ion 

transporter, was also associated with elevated cT1 measures in our study, as well as elevated 

transaminases in UK Biobank. Manganese is an essential metal required for the adequate 

functioning of numerous enzymes, however it is toxic and induces cell death at elevated cellular 

levels.[54] Loss-of-function mutations in SLC30A10 have previously been associated with 
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cirrhosis, higher manganese levels in liver biopsy samples and neurotoxicity including 

parkinsonian like movement disorders.[54,55] 

The association between cT1 increasing alleles at the two novel loci (SLC39A8 and SLC30A10) 

and higher ALT and AST adds supportive evidence for their pathogenic role in the liver. The 

missense variant in SLC39A8 has previously been shown to be associated with multiple traits 

including alcohol intake, BMI, schizophrenia, Crohn’s disease, lower brain grey matter volume 

and microbiome diversity;[38,56–58]  we show for the first time a further novel association with 

higher diabetes and triglyceride levels, whilst highlighting variable effects on cholesterol levels. 

The associations of both variants with cT1 were independent of BMI, alcohol intake, liver fat 

percentage and liver iron content in our sensitivity GWAS models. 

We identified a further two missense variants that were associated with cT1 but not with 

elevated transaminases; therefore, further research is required to validate these findings and 

explore their potential role in liver inflammation and fibrosis. The cT1-increasing allele in 

rs111723834 (missense variant in PCK2, also an intronic variant in NRL) was associated with 

lower transaminases, lower risk of type 2 diabetes, and lower triglycerides. PCK2 encodes a 

mitochondrial enzyme that catalyzes the conversion of oxaloacetate to phosphoenolpyruvate 

and has a key role in hepatic gluconeogenesis. Mitochondrial phosphoenolpyruvate 

carboxykinase deficiency (M-PEPCKD) is a rare autosomal recessive disorder resulting from 

impared gluconeogenesis, and clinical characteristics include hypotonia, hepatomegaly, failure 

to thrive, lactic acidosis and hypoglycaemia.[59] The missense variant in PCK2 is also an 

intronic variant in NRL, and it is unclear which gene is associated with elevated cT1 measures. 

NRL however encodes for neural retinal leucine zipper transcription factor that is specifically 

expressed in neuronal retina cells, making it an unlikely causal gene candidate for liver cT1. The 

cT1-increasing allele (rs4820268-A > G)  in TMPRSS6 has previously been reported to be 

associated with lower plasma iron levels and lower liver iron content.[21,60] It is also associated 

with a dysmetabolic profile including higher LDL cholesterol, higher cardiovascular disease risk 

and hypertension (Figure 2). Its effect on cT1 however remained significant even after 
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correcting for liver iron content in sensitivity analyses, making it unlikely that the association was 

secondary to bias resulting from iron correction when calculating cT1. Previous Mendelian 

randomisation studies have shown that higher circulating iron may be cardioprotective,[61] 

possibly through reduced circulating LDL-cholesterol and lower blood pressure.[62] The same 

mechanisms may explain why the allele associated with lower circulating iron levels is 

associated with higher cT1.  

Known NAFLD and cirrhosis risk alleles in PNPLA3 and TM6SF2 were also associated with 

both elevated cT1 and MRI derived PDFF in our cohort. These associations provide strong 

positive controls for our study and validate for the first time the association with MR determined 

liver PDFF. The risk alleles in these two genes were further associated with higher risk of type 2 

diabetes, but with lower serum triglycerides, LDL cholesterol, and lower risk for cardiovascular 

disease, as previously described.[63,64] In our GWAS on PDFF, alongside PNPLA3 and 

TM6SF2, we further identified variants in GCKR (another known NAFLD variant which we have 

replicated) and APOE (apolipoprotein E, a gene which encodes a major cholesterol 

carrier).[63,65] The APOE risk allele (T) for PDFF is associated with higher risk of diabetes, and 

lower risk of cardiovascular disease and LDL cholesterol in independent GWASs.[66] This data 

provide evidence that cT1 and PDFF phenotypes share some but not all aetiopathogenic 

mechanisms. 

We demonstrated that four of five variants associated with all-cause liver cirrhosis (in PNPLA3, 

TM6SF2, HSD17B13, and MARC1)[28] were also associated with liver cT1 with the first two 

reaching genome-wide significance. The paradoxical inverse association between the liver iron-

increasing allele in HFE may be due to overcorrection since cT1 measures are corrected for 

liver iron content and were inversely correlated in our cohort. Adjustment for liver iron content in 

our sensitivity analysis remarkably attenuated the association with cT1. SERPINA1 variant was 

associated with all-cause cirrhosis only in a recessive model.[28] We did not have any 

homozygotes in our liver cT1 cohort to detect a recessive model of association with cT1.  
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Identifying causal mechanisms to steatohepatitis is crucial since interventions targeting these 

modifiable exposures may prevent liver disease progression. Our Mendelian randomisation 

study investigated 24 possible metabolic traits that may cause steatohepatitis. We provide 

genetic evidence that insulin resistance, non-alcoholic fatty liver and higher BMI causally 

increase cT1. Recent genetic studies have further identified variants associated with higher BMI 

but lower risk of type 2 diabetes, hypertension and heart disease.[67] These “favourable 

adiposity” variants are also associated with higher subcutaneous-to-visceral adipose tissue ratio 

and may protect from disease through higher adipose storage capacity, by promoting lipid 

deposition in subcutaneous tissue rather than within the circulation and ectopic places. The 

inverse link between favourable adiposity and steatohepatitis provides supportive evidence for 

the protective effects of this phenotype on a variety of cardiometabolic diseases, underlying 

mechanisms of which can be further explored and point to future preventive and therapeutic 

strategies.  

Our study had a number of limitations. We did not have any independent cohort to replicate our 

findings. To overcome this limitation, we investigated associations between cT1 variants and 

ALT and AST levels both in UK Biobank and an independent GWAS of liver enzymes.[68] While 

MRI derived cT1 is clinically available and is used to assess the severity of steatohepatitis, this 

measure is still novel, and further research is needed to determine the relative contributions of 

inflammation and fibrosis to cT1.[10] Whilst it would be useful to have histological reference 

data for cT1, pathologist-interpreted liver biopsies do not lend themselves to large studies of this 

nature because of risk to patients and inter-rater variance in assessment of histology. This may 

be improved with advances in digitally processed histology to address variance and centralised 

collection of pathology for large consortia like the European LITMUS study. While cT1 has 

demonstrated excellent repeatability[42,46] and good correlation with fibro-inflammation and 

clinical outcomes,[7,9] other histological phenomena such as simple steatosis and ballooning 

have been shown to contribute to an increased T1 signal.[7] Only two of the six cT1 variants 

were associated with liver steatosis which highlights the complementarity of cT1 and liver fat 
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PDFF as biomarkers of liver status, and their potential to recognise different mechanisms 

predisposing to liver disease. 

Conclusion 

cT1 and PDFF phenotypes share some but not all aetiopathogenic mechanisms. We identified 

novel associations between an MRI derived measure of fibroinflammatory liver disease and 

variants in SLC30A10 and SLC39A8 that replicated with blood biomarkers of hepatocyte injury. 

These genes have a critical role of transporting heavy metal cofactors for a multitude of 

biological processes. Future studies may determine whether targeting SLC30A10 and SLC39A8 

are possible therapeutic options to prevent liver disease in at risk individuals. Our Mendelian 

randomisation study provides genetic evidence that addressing weight gain and insulin 

resistance are useful strategies in the prevention of steatohepatitis. 

Data availability  

Full data including individual cT1 and PDFF measures will be returned to UK Biobank and made 

publicly available via application (amsportal.ukbiobank.ac.uk).    
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Tables 

Table 1. Characteristics of UK Biobank participants in the imaging subset and the subset 

of participants who were not part of the imaging study. 

 UK Biobank imaging subset UK Biobank non-imaging subset 

Characteristics Men Women Men Women 

No (%) 7,142 8,396 229,134 273,402 

Age  

(IQR) (years) 57 (50;62) 55 (48;60) 58 (50;64) 57 (50;63) 

Waist 

Circumference (IQR) 

(cm)* 94 (87;100) 79 (73;87) 96 (89;103) 83 (75;92) 

Townsend 

deprivation index 

(IQR) 

-2.78 

 (-3.98;0.82) 

-2.66  

(-3.90;-0.69) 

-2.12 

(-3.65;0.63) 

-2.14 

 (-3.63;0.49) 

Self reported 

diabetes (%)* 245 (3.43%) 116 (1.38%) 15,950 (7.0%) 9,794 (3.6%) 

Liver cT1  

(IQR) (ms) 694 (662;730) 676 (647;710) NA NA 

BMI 

(IQR) (kg/m2)* 26.6 (24.5;28.8) 25  (22.9;28) 27.3 (25;30.1) 26.1 (23.5;30) 

* BMI (Mann Whitney U test, p = 1 x 10-80), waist circumference (Mann Whitney U test, p = 1 x 10-100), diabetes 

prevalence (Pearson’s chi squared test, p = 1 x 10-27) were lower in the imaging subset compared to the rest of UK 

Biobank. Levels of significance for all tests: (p < 0.05).  
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Table 2. The association between six independent genetic variants and liver cT1. A linear 

mixed model was used for genetic associations (levels of significance: p < 5 x 10-8). 

SNP CHR BP EA OA EAF Gene 

Variant 

type 

Amino acid 

change 

BETA SE P-value 

Variance 

explained 

rs759359281 1 220100497 C CA 0.06 SLC30A10 Intron       0.137 0.026 2.8 x 10
-8

 0.23 

rs13107325 4 103188709 T C 0.07 SLC39A8 Missense  A391T 0.544 0.022 1.2 x 10
-133

 3.95 

rs111723834 14 24572932 A G 0.02 PCK2, NRL Missense  A561G  0.291 0.046 3.0 x 10
-11

 0.27 

rs58542926 19 19379549 T C 0.07 TM6SF2 

Missense, 

Intron 

  

I148M 0.124 0.022 1.4 x 10
-8

 0.22 

rs4820268 22 37469591 G A 0.46 TMPRSS6 Missense  V736A 0.066 0.012 1.6 x 10
-9

 0.2 

rs738409 22 44324727 G C 0.21 PNPLA3 Missense  E167K 0.095 0.014 9.6 x 10
-13

 0.9 

  

Effects are in standard deviations (SD). SE = Standard error; CHR:  = Chromosome; BP = Base pair; EA = Effect 

allele; OA = Other Allele; EAF = Effect allele frequency.   
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Table 3. Effects of all-cause cirrhosis risk alleles on liver cT1. * indicates recessive 

models were run for the previously published all cause cirrhosis GWAS; all other 

association analyses used additive models. Logistic regression was used for the genetic 

associations with cirrhosis; a linear mixed model was used for the genetic associations 

with cT1 (levels of significance: p < 5 x 10-8, suggestive p < 0.05) 

SNP CHR EA OA EAF BETA 

Cirrhosis 

P     

Cirrhosis 

BETA  

cT1 

SE     

cT1 

P cT1 Gene 

rs2642438 1 G A 0.297 0.12 8.7 x 10
-7 

0.036 0.0127 0.0049 MARC1 

rs72613567 4 T TA 0.722 0.16 4.5 x 10
-8

 0.030 0.0129 0.02 HSD17B13 

rs58542926 19 T C 0.927 0.35 9.7 x 10
-24

 0.124 0.0221 1.4 x 10
-8 

TM6SF2 

rs738409 22 G C 0.211 0.38 2.2 x 10
-67

 0.095 0.0141 9.6 x 10
-13

 PNPLA3 

rs1800562* 6 A G 0.925 1.16 1.3 x 10
-14

 -0.111 0.0223 8 x 10
-7

 HFE 

rs28929474* 14 T C 0.0186 0.29 0.01 -0.037 0.0430 0.47 SERPINA1 

 

CHR = Chromosome; EA = Effect allele; OA = Other Allele; EAF = Effect allele frequency; SE = Standard error; * = 

recessive models used for all cause cirrhosis analysis. Beta Cirrhosis is the effect on all-cause cirrhosis in log(Odds 

Ratio) and Beta cT1 is the effect on cT1 in standard deviation (SD). 
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Figure 1. GWAS of Liver cT1 in UK Biobank. 1A. Liver MRI scans of cT1. Three selected 

cases of liver MRI scans showing, from left to right, progressively elevated cT1 values (671ms, 

777ms, 917ms). 1B. Manhattan plot illustrating GWAS of liver cT1 measurements in 

14,440 UK Biobank individuals (~12 million imputed variants). The x-axis is the 

chromosomal position and y-axis is the significance of association for each variant in log10(p-

values). Grey line indicates genome-wide significance level. For the GWAS, a linear mixed 

model was used. Levels of significance: p < 5 x 10-8
. 

Figure 2. Forest plot of the associations of liver cT1 variants with liver and metabolic 

phenotypes. Effects are in standard deviations (SD) for continuous traits and log(OR) for 

disease outcomes per copy of the risk allele. ALT = Alanine transferase, AST = Aspartate 

transferase, GGT = gamma-glutamyl transferase, ALP = alkaline phosphatase, LDL_C = LDL 

cholesterol, HDL_C = HDL cholesterol, T2DM = Type 2 Diabetes, CAD = coronary artery 

disease. A linear mixed model was used for genetic associations. Levels of significance: p < 

0.05. 

Figure 3. LD regression analysis. Figure demonstrating the significant genetic correlations 

(rg) between cT1 and metabolic traits following correction for multiple testing (levels of 

significance: p false discovery rate < 0.05) among more than 120 traits. The colours correspond 

to significance of correlation (t-test); red: p < 1x10-8; orange: 1x10-6 < p < 1x10-5; blue: 1x10-5 < p 

< 1x10-4; green: 1x10-4 < p < 1x10-3; yellow: 0.001 < p < 0.01. Higher cT1 is genetically 

positively correlated with VLDL, type 2 diabetes, coronary artery disease, and inversely 

correlated with HDL. HOMA-IR = Homeostatic model assessment insulin resistance, HOMA-B = 

Homeostatic model assessment β cell function, VLDL = very large density lipoprotein, HDL = 

High density lipoprotein.  

Figure 4. Mendelian randomisation investigating the effect of 24 predominantly metabolic 

traits on liver cT1. We used two sample Mendelian randomisation analysis to investigate the 

causal effects of metabolic traits on liver cT1. For full results, including sensitivity analyses, 
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please see Supplementary Table 4. NAFLD = Non-alcoholic fatty liver disease, 2hrGlu = 2 

hour glucose tolerance test, WHR_BMI = Waist hip ratio adjusted for BMI. The inverse variance 

weighted test (IVW) was used as the main analysis. Levels of significance: p < 0.05. 
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Key Highlights:  

1) Variants in genes encoding for metal ion transporters (SLC30A10, SLC39A8) and in 

genes previously associated with liver fat (TM6SF2 and PNPLA3) are associated with 

both liver MRI-derived cT1 measures and transaminases in UK Biobank. 

2) cT1 is highly heritable, and shows positive genetic correlations with BMI, non-alcoholic 

fatty liver and VLDL, and inverse correlations with HDL. 

3) There is genetic evidence that insulin resistance, non-alcoholic fatty liver and higher BMI 

cause higher liver cT1, a proxy for steatohepatitis and liver fibrosis.



 


