50 research outputs found
Time Dependent Monte Carlo Radiative Transfer Calculations For 3-Dimensional Supernova Spectra, Lightcurves, and Polarization
We discuss Monte-Carlo techniques for addressing the 3-dimensional
time-dependent radiative transfer problem in rapidly expanding supernova
atmospheres. The transfer code SEDONA has been developed to calculate the
lightcurves, spectra, and polarization of aspherical supernova models. From the
onset of free-expansion in the supernova ejecta, SEDONA solves the radiative
transfer problem self-consistently, including a detailed treatment of gamma-ray
transfer from radioactive decay and with a radiative equilibrium solution of
the temperature structure. Line fluorescence processes can also be treated
directly. No free parameters need be adjusted in the radiative transfer
calculation, providing a direct link between multi-dimensional hydrodynamical
explosion models and observations. We describe the computational techniques
applied in SEDONA, and verify the code by comparison to existing calculations.
We find that convergence of the Monte Carlo method is rapid and stable even for
complicated multi-dimensional configurations. We also investigate the accuracy
of a few commonly applied approximations in supernova transfer, namely the
stationarity approximation and the two-level atom expansion opacity formalism.Comment: 16 pages, ApJ accepte
Plaskett's Star: Analysis of the CoRoT photometric data
The SRa02 of the CoRoT space mission for Asteroseismology was partly devoted
to stars belonging to the Mon OB2 association. An intense monitoring was
performed on Plaskett's Star (HD47129) and the unprecedented quality of the
light curve allows us to shed new light on this very massive, non-eclipsing
binary system. We particularly aimed at detecting periodic variability which
might be associated with pulsations or interactions between both components. We
also searched for variations related to the orbital cycle which could help to
constrain the inclination and the morphology of the binary system. A
Fourier-based prewhitening and a multiperiodic fitting procedure were applied
to analyse the time series and extract the frequencies of variations. We
describe the noise properties to tentatively define an appropriate significance
criterion, to only point out the peaks at a certain significance level. We also
detect the variations related to the orbital motion and study them by using the
NIGHTFALL program. The periodogram exhibits a majority of peaks at low
frequencies. Among these peaks, we highlight a list of about 43 values,
including notably two different sets of harmonic frequencies whose fundamental
peaks are located at about 0.07 and 0.82d-1. The former represents the orbital
frequency of the binary system whilst the latter could probably be associated
with non-radial pulsations. The study of the 0.07d-1 variations reveals the
presence of a hot spot most probably situated on the primary star and facing
the secondary. The investigation of this unique dataset constitutes a further
step in the understanding of Plaskett's Star. These results provide a first
basis for future seismic modelling. The existence of a hot region between both
components renders the determination of the inclination ambiguous.Comment: Accepted in A&A, 13 pages, 7 figures, 2 table
Evidence for a physically bound third component in HD 150136
Context. HD150136 is one of the nearest systems harbouring an O3 star.
Although this system was for a long time considered as binary, more recent
investigations have suggested the possible existence of a third component.
Aims. We present a detailed analysis of HD 150136 to confirm the triple nature
of this system. In addition, we investigate the physical properties of the
individual components of this system. Methods. We analysed high-resolution,
high signal-to-noise data collected through multi-epoch runs spread over ten
years. We applied a disentangling program to refine the radial velocities and
to obtain the individual spectra of each star. With the radial velocities, we
computed the orbital solution of the inner system, and we describe the main
properties of the orbit of the outer star such as the preliminary mass ratio,
the eccentricity, and the orbital-period range. With the individual spectra, we
determined the stellar parameters of each star by means of the CMFGEN
atmosphere code. Results. We offer clear evidence that HD 150136 is a triple
system composed of an O3V((f\ast))-3.5V((f+)), an O5.5-6V((f)), and an
O6.5-7V((f)) star. The three stars are between 0-3 Myr old. We derive dynamical
masses of about 64, 40, and 35 Msun for the primary, the secondary and the
third components by assuming an inclination of 49{\deg}. It currently
corresponds to one of the most massive systems in our galaxy. The third star
moves with a period in the range of 2950 to 5500 d on an outer orbit with an
eccentricity of at least 0.3. This discovery makes HD 150136 the first
confirmed triple system with an O3 primary star. However, because of the long
orbital period, our dataset is not sufficient to constrain the orbital solution
of the tertiary component with high accuracy.Comment: 13 pages, 11 figures, accepted at A&
Recommended from our members
Potential role of diabetes mellitus‐associated T cell senescence in epithelial ovarian cancer omental metastasis
Epithelial ovarian cancer (EOC) is one of the most common causes of cancer‐related deaths among women and is associated with age and age‐related diseases. With increasing evidence of risks associated with metabolic inflammatory conditions, such as obesity and type 2 diabetes mellitus (T2DM), it is important to understand the complex pathophysiological mechanisms underlying cancer progression and metastasis. Age‐related conditions can lead to both genotypic and phenotypic immune function alterations, such as induction of senescence, which can contribute to disease progression. Immune senescence is a common phenomenon in the ageing population, which is now known to play a role in multiple diseases, often detrimentally. EOC progression and metastasis, with the highest rates in the 75–79 age group in women, have been shown to be influenced by immune cells within the “milky spots” or immune clusters of the omentum. As T2DM has been re-ported to cause T cell senescence in both prediabetic and diabetic patients, there is a possibility that poor prognosis in EOC patients with T2DM is partly due to the accumulation of senescent T cells in the omentum. In this review, we explore this hypothesis with recent findings, potential therapeutic approaches, and future directions
Mass-loss rates of Very Massive Stars
We discuss the basic physics of hot-star winds and we provide mass-loss rates
for (very) massive stars. Whilst the emphasis is on theoretical concepts and
line-force modelling, we also discuss the current state of observations and
empirical modelling, and address the issue of wind clumping.Comment: 36 pages, 15 figures, Book Chapter in "Very Massive Stars in the
Local Universe", Springer, Ed. Jorick S. Vin
Wind modelling of very massive stars up to 300 solar masses
Some studies have claimed a universal stellar upper-mass limit of 150 Msun. A
factor that is often overlooked is that there might be a difference between the
current and initial masses of the most massive stars, as a result of mass loss.
We present Monte Carlo mass-loss predictions for very massive stars in the
range 40-300 Msun, with large luminosities and Eddington factors Gamma. Using
our new dynamical approach, we find an upturn in the mass-loss vs. Gamma
dependence, at the point where the winds become optically thick. This coincides
with the location where wind efficiency numbers surpass the single-scattering
limit of Eta = 1, reaching values up to Eta = 2.5. Our modelling suggests a
transition from common O-type winds to Wolf-Rayet characteristics at the point
where the winds become optically thick. This transitional behaviour is also
revealed with respect to the wind acceleration parameter beta, which starts at
values below 1 for the optically thin O-stars, and naturally reaches values as
high as 1.5-2 for the optically thick Wolf-Rayet models. An additional finding
concerns the transition in spectral morphology of the Of and WN characteristic
He II line at 4686 Angstrom. When we express our mass-loss predictions as a
function of the electron scattering Gamma_e (=L/M) only, we obtain a mass-loss
Gamma dependence that is consistent with a previously reported power-law Mdot
propto Gamma^5 (Vink 2006) that was based on our semi-empirical modelling
approach. When we express Mdot in terms of both Gamma and stellar mass, we find
Mdot propto M^0.8 Gamma^4.8 for our high Gamma models. Finally, we confirm that
the Gamma-effect on the mass-loss predictions is much stronger than that of an
increased helium abundance, calling for a fundamental revision in the way mass
loss is incorporated in evolutionary models of the most massive stars.Comment: minor language changes (Astronomy & Astrophysics in press - 11 pages,
10 figures
Eta Carinae and the Luminous Blue Variables
We evaluate the place of Eta Carinae amongst the class of luminous blue
variables (LBVs) and show that the LBV phenomenon is not restricted to
extremely luminous objects like Eta Car, but extends luminosities as low as
log(L/Lsun) = 5.4 - corresponding to initial masses ~25 Msun, and final masses
as low as ~10-15 Msun. We present a census of S Doradus variability, and
discuss basic LBV properties, their mass-loss behaviour, and whether at maximum
light they form pseudo-photospheres. We argue that those objects that exhibit
giant Eta Car-type eruptions are most likely related to the more common type of
S Doradus variability. Alternative atmospheric models as well as
sub-photospheric models for the instability are presented, but the true nature
of the LBV phenomenon remains as yet elusive. We end with a discussion on the
evolutionary status of LBVs - highlighting recent indications that some LBVs
may be in a direct pre-supernova state, in contradiction to the standard
paradigm for massive star evolution.Comment: 27 pages, 6 figures, Review Chapter in "Eta Carinae and the supernova
imposters" (eds R. Humphreys and K. Davidson) new version submitted to
Springe
High resolution optical spectroscopy of Plaskett's star
We present here the analysis of an extensive set of high resolution optical
spectra of Plaskett's star (HD 47129). We use a disentangling method to
separate the individual spectra of each star. We derive a new orbital solution
and discuss the spectral classification of both components. A Doppler
tomography technique applied to the emission lines H alpha and He II 4686
yields a Doppler map that illustrates the wind interactions in the system.
Finally, an atmosphere code is used to determine the different chemical
abundances of the system components and the wind parameters. HD 47129 appears
to be an O8 III/I + O7.5 III binary system in a post RLOF evolutionary stage,
where matter has been transferred from the primary to the secondary star. The
He overabundance of the secondary supports this scenario. In addition, the N
overabundance and C underabundance of the primary component confirm previous
results based on X-ray spectroscopy and indicate that the primary is an evolved
massive star. Furthermore, the secondary star has a large rotational velocity
that deforms its surface, leading to a non-uniform distribution in effective
temperature. This could explain the variations in the equivalent widths of the
secondary lines with phase. We suggest that the wind of the secondary star is
confined near the equatorial plane because of its high rotational velocity,
affecting the ram pressure equilibrium in the wind interaction zone.Comment: Accepted in A &
Spectra of supernovae in the nebular phase
When supernovae enter the nebular phase after a few months, they reveal
spectral fingerprints of their deep interiors, glowing by radioactivity
produced in the explosion. We are given a unique opportunity to see what an
exploded star looks like inside. The line profiles and luminosities encode
information about physical conditions, explosive and hydrostatic
nucleosynthesis, and ejecta morphology, which link to the progenitor properties
and the explosion mechanism. Here, the fundamental properties of spectral
formation of supernovae in the nebular phase are reviewed. The formalism
between ejecta morphology and line profile shapes is derived, including effects
of scattering and absorption. Line luminosity expressions are derived in
various physical limits, with examples of applications from the literature. The
physical processes at work in the supernova ejecta, including gamma-ray
deposition, non-thermal electron degradation, ionization and excitation, and
radiative transfer are described and linked to the computation and application
of advanced spectral models. Some of the results derived so far from
nebular-phase supernova analysis are discussed.Comment: Book chapter for 'Handbook of Supernovae,' edited by Alsabti and
Murdin, Springer. 51 pages, 14 figure
The VLT-FLAMES Tarantula Survey
Context. The Tarantula region in the Large Magellanic Cloud (LMC) contains the richest population of spatially resolved massive O-type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties.
Aims. Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories.
Methods. We apply an automated method for quantitative spectroscopic analysis of O stars combining the non-LTE stellar atmosphere model fastwind with the genetic fitting algorithm pikaia to determine the following stellar properties: effective temperature, surface gravity, mass-loss rate, helium abundance, and projected rotational velocity. The latter has been constrained without taking into account the contribution from macro-turbulent motions to the line broadening.
Results. We present empirical effective temperature versus spectral subtype calibrations at LMC-metallicity for giants and supergiants. The calibration for giants shows a +1kK offset compared to similar Galactic calibrations; a shift of the same magnitude has been reported for dwarfs. The supergiant calibrations, though only based on a handful of stars, do not seem to indicate such an offset. The presence of a strong upturn at spectral type O3 and earlier can also not be confirmed by our data. In the spectroscopic and classical Hertzsprung-Russell diagrams, our sample O stars are found to occupy the region predicted to be the core hydrogen-burning phase by state-of-the-art models. For stars initially more massive than approximately 60 M⊙, the giant phase already appears relatively early on in the evolution; the supergiant phase develops later. Bright giants, however, are not systematically positioned between giants and supergiants at Minit ≳ 25 M⊙. At masses below 60 M⊙, the dwarf phase clearly precedes the giant and supergiant phases; however this behavior seems to break down at Minit ≲ 18 M⊙. Here, stars classified as late O III and II stars occupy the region where O9.5-9.7 V stars are expected, but where few such late O V stars are actually seen. Though we can not exclude that these stars represent a physically distinct group, this behavior may reflect an intricacy in the luminosity classification at late O spectral subtype. Indeed, on the basis of a secondary classification criterion, the relative strength of Si iv to He i absorption lines, these stars would have been assigned a luminosity class IV or V. Except for five stars, the helium abundance of our sample stars is in agreement with the initial LMC composition. This outcome is independent of their projected spin rates. The aforementioned five stars present moderate projected rotational velocities (i.e., νesini < 200kms-1) and hence do not agree with current predictions of rotational mixing in main-sequence stars. They may potentially reveal other physics not included in the models such as binary-interaction effects. Adopting theoretical results for the wind velocity law, we find modified wind momenta for LMC stars that are ~0.3 dex higher than earlier results. For stars brighter than 105 L⊙, that is, in the regime of strong stellar winds, the measured (unclumped) mass-loss rates could be considered to be in agreement with line-driven wind predictions if the clump volume filling factors were fV ~ 1/8 to 1/6