188 research outputs found
Selection for Replicases in Protocells
PMCID: PMC3649988This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson
We explore the implications of a 126 GeV Higgs boson indicated by the recent
LHC results for two-Higgs doublet model (2HDM). Identifying the 126 GeV Higgs
boson as either the lighter or heavier of CP even neutral Higgs bosons in 2HDM,
we examine how the masses of Higgs fields and mixing parameters can be
constrained by the theoretical conditions and experimental constraints. The
theoretical conditions taken into account are the vacuum stability,
perturbativity and unitarity required to be satisfied up to a cut-off scale. We
also show how bounds on the masses of Higgs bosons and mixing parameters depend
on the cut-off scale. In addition, we investigate whether the allowed regions
of parameter space can accommodate particularly the enhanced di-photon signals,
ZZ* and WW* decay modes of the Higgs boson, and examine the prediction of the
signal strength of Z{\gamma} decay mode for the allowed regions of the
parameter space.Comment: To be published in JHEP, 20 pages, 11 figures, Figures and results
are updated for the recent LHC result
Psychological determinants of whole-body endurance performance
Background: No literature reviews have systematically identified and evaluated research on the psychological determinants of endurance performance, and sport psychology performance-enhancement guidelines for endurance sports are not founded on a systematic appraisal of endurance-specific research.
Objective: A systematic literature review was conducted to identify practical psychological interventions that improve endurance performance and to identify additional psychological factors that affect endurance performance. Additional objectives were to evaluate the research practices of included studies, to suggest theoretical and applied implications, and to guide future research.
Methods: Electronic databases, forward-citation searches, and manual searches of reference lists were used to locate relevant studies. Peer-reviewed studies were included when they chose an experimental or quasi-experimental research design, a psychological manipulation, endurance performance as the dependent variable, and athletes or physically-active, healthy adults as participants.
Results: Consistent support was found for using imagery, self-talk, and goal setting to improve endurance performance, but it is unclear whether learning multiple psychological skills is more beneficial than learning one psychological skill. The results also demonstrated that mental fatigue undermines endurance performance, and verbal encouragement and head-to-head competition can have a beneficial effect. Interventions that influenced perception of effort consistently affected endurance performance.
Conclusions: Psychological skills training could benefit an endurance athlete. Researchers are encouraged to compare different practical psychological interventions, to examine the effects of these interventions for athletes in competition, and to include a placebo control condition or an alternative control treatment. Researchers are also encouraged to explore additional psychological factors that could have a negative effect on endurance performance. Future research should include psychological mediating variables and moderating variables. Implications for theoretical explanations of endurance performance and evidence-based practice are described
Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein
Citation: Londono-Renteria, B., Troupin, A., Conway, M. J., Vesely, D., Ledizet, M., Roundy, C. M., . . . Colpitts, T. M. (2015). Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein. Plos Pathogens, 11(10), 23. doi:10.1371/journal.ppat.1005202Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were >= 5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses
Characterization of Diaphanous-related formin FMNL2 in human tissues
Background: Diaphanous-related formins govern actin-based processes involved in many cellular functions, such as cell movement and invasion. Possible connections to developmental processes and cellular changes associated with malignant phenotype make them interesting study targets. In spite of this, very little is known of the tissue distribution and cellular location of any mammalian formin. Here we have carried out a comprehensive analysis of the formin family member formin -like 2 (FMNL2) in human tissues. Results: An FMNL2 antibody was raised and characterized. The affinity-purified FMNL2 antibody was validated by Western blotting, Northern blotting, a peptide competition assay and siRNA experiments. Bioinformatics-based mRNA profiling indicated that FMNL2 is widely expressed in human tissues. The highest mRNA levels were seen in central and peripheral nervous systems. Immunohistochemical analysis of 26 different human tissues showed that FMNL2 is widely expressed, in agreement with the mRNA profile. The widest expression was detected in the central nervous system, since both neurons and glial cells expressed FMNL2. Strong expression was also seen in many epithelia. However, the expression in different cell types was not ubiquitous. Many mesenchymal cell types showed weak immunoreactivity and cells lacking expression were seen in many tissues. The subcellular location of FMNL2 was cytoplasmic, and in some tissues a strong perinuclear dot was detected. In cultured cells FMNL2 showed mostly a cytoplasmic localization with perinuclear accumulation consistent with the Golgi apparatus. Furthermore, FMNL2 co-localized with F-actin to the tips of cellular protrusions in WM164 human melanoma cells. This finding is in line with FMNL2's proposed function in the formation of actin filaments in cellular protrusions, during amoeboid cellular migration. Conclusion: FMNL2 is expressed in multiple human tissues, not only in the central nervous system. The expression is especially strong in gastrointestinal and mammary epithelia, lymphatic tissues, placenta, and in the reproductive tract. In cultured melanoma cells, FMNL2 co-localizes with F-actin dots at the tips of cellular protrusions.</p
Novel use of an exchange catheter to facilitate intubation with an Aintree catheter in a tall patient with a predicted difficult airway: a case report
<p>Abstract</p> <p>Introduction</p> <p>The Aintree intubating catheter (Cook<sup>® </sup>Medical Inc., Bloomington, IN, USA) has been shown to successfully facilitate difficult intubations when other methods have failed. The Aintree intubating catheter (Cook<sup>® </sup>Medical Inc., Bloomington, IN, USA) has a fixed length of 56 cm, and it has been suggested in the literature that it may be too short for safe use in patients who are tall.</p> <p>Case presentation</p> <p>We present the case of a 32-year-old, 180 cm tall Caucasian woman with a predicted difficult airway who presented to our facility for an emergency cesarean section. After several failed intubation attempts via direct laryngoscopy, an airway was established with a laryngeal mask airway. After delivery of a healthy baby, our patient's condition necessitated tracheal intubation. A fiber-optic bronchoscope loaded with an Aintree intubating catheter (Cook<sup>® </sup>Medical Inc., Bloomington, IN, USA) was passed through the laryngeal mask airway into the trachea until just above the carina, but was too short to safely allow for the passage of an endotracheal tube.</p> <p>Conclusions</p> <p>We present a novel technique in which the Aintree intubating catheter (Cook<sup>® </sup>Medical Inc., Bloomington, IN, USA) was replaced with a longer (100 cm) exchange catheter, over which an endotracheal tube was passed successfully into the trachea.</p
Non-Coding RNA Prediction and Verification in Saccharomyces cerevisiae
Non-coding RNA (ncRNA) play an important and varied role in cellular function. A significant amount of research has been devoted to computational prediction of these genes from genomic sequence, but the ability to do so has remained elusive due to a lack of apparent genomic features. In this work, thermodynamic stability of ncRNA structural elements, as summarized in a Z-score, is used to predict ncRNA in the yeast Saccharomyces cerevisiae. This analysis was coupled with comparative genomics to search for ncRNA genes on chromosome six of S. cerevisiae and S. bayanus. Sets of positive and negative control genes were evaluated to determine the efficacy of thermodynamic stability for discriminating ncRNA from background sequence. The effect of window sizes and step sizes on the sensitivity of ncRNA identification was also explored. Non-coding RNA gene candidates, common to both S. cerevisiae and S. bayanus, were verified using northern blot analysis, rapid amplification of cDNA ends (RACE), and publicly available cDNA library data. Four ncRNA transcripts are well supported by experimental data (RUF10, RUF11, RUF12, RUF13), while one additional putative ncRNA transcript is well supported but the data are not entirely conclusive. Six candidates appear to be structural elements in 5′ or 3′ untranslated regions of annotated protein-coding genes. This work shows that thermodynamic stability, coupled with comparative genomics, can be used to predict ncRNA with significant structural elements
Sequential Adaptive Mutations Enhance Efficient Vector Switching by Chikungunya Virus and Its Epidemic Emergence
The adaptation of Chikungunya virus (CHIKV) to a new vector, the Aedes albopictus mosquito, is a major factor contributing to its ongoing re-emergence in a series of large-scale epidemics of arthritic disease in many parts of the world since 2004. Although the initial step of CHIKV adaptation to A. albopictus was determined to involve an A226V amino acid substitution in the E1 envelope glycoprotein that first arose in 2005, little attention has been paid to subsequent CHIKV evolution after this adaptive mutation was convergently selected in several geographic locations. To determine whether selection of second-step adaptive mutations in CHIKV or other arthropod-borne viruses occurs in nature, we tested the effect of an additional envelope glycoprotein amino acid change identified in Kerala, India in 2009. This substitution, E2-L210Q, caused a significant increase in the ability of CHIKV to develop a disseminated infection in A. albopictus, but had no effect on CHIKV fitness in the alternative mosquito vector, A. aegypti, or in vertebrate cell lines. Using infectious viruses or virus-like replicon particles expressing the E2-210Q and E2-210L residues, we determined that E2-L210Q acts primarily at the level of infection of A. albopictus midgut epithelial cells. In addition, we observed that the initial adaptive substitution, E1-A226V, had a significantly stronger effect on CHIKV fitness in A. albopictus than E2-L210Q, thus explaining the observed time differences required for selective sweeps of these mutations in nature. These results indicate that the continuous CHIKV circulation in an A. albopictus-human cycle since 2005 has resulted in the selection of an additional, second-step mutation that may facilitate even more efficient virus circulation and persistence in endemic areas, further increasing the risk of more severe and expanded CHIK epidemics
Teleost metamorphosis: the role of thyroid hormone
In most teleosts, metamorphosis encompasses a dramatic post-natal developmental process where the free-swimming larvae undergo a series of morphological, cellular and physiological changes that enable the larvae to become a fully formed, albeit sexually immature, juvenile fish. In all teleosts studied to date thyroid hormones (TH) drive metamorphosis, being the necessary and sufficient factors behind this developmental transition. During metamorphosis, negative regulation of thyrotropin by thyroxine (T4) is relaxed allowing higher whole-body levels of T4 that enable specific responses at the tissue/cellular level. Higher local thyroid cellular signaling leads to cell-specific responses that bring about localized developmental events. TH orchestrate in a spatial-temporal manner all local developmental changes so that in the end a fully functional organism arises. In bilateral teleost species, the most evident metamorphic morphological change underlies a transition to a more streamlined body. In the pleuronectiform lineage (flatfishes), these metamorphic morphological changes are more dramatic. The most evident is the migration of one eye to the opposite side of the head and the symmetric pelagic larva development into an asymmetric benthic juvenile. This transition encompasses a dramatic loss of the embryonic derived dorsal-ventral and left-right axis. The embryonic dorsal-ventral axis becomes the left-right axis, whereas the embryonic left-right axis becomes, irrespectively, the dorsal-ventral axis of the juvenile animal. This event is an unparalleled morphological change in vertebrate development and a remarkable display of the capacity of TH-signaling in shaping adaptation and evolution in teleosts. Notwithstanding all this knowledge, there are still fundamental questions in teleost metamorphosis left unanswered: how the central regulation of metamorphosis is achieved and the neuroendocrine network involved is unclear; the detailed cellular and molecular events that give rise to the developmental processes occurring during teleost metamorphosis are still mostly unknown. Also in flatfish, comparatively little is still known about the developmental processes behind asymmetric development. This review summarizes the current knowledge on teleost metamorphosis and explores the gaps that still need to be challenged.Portuguese Foundation for Science and Technology: (IF/01274/2014)
UID/Multi/04326/2016 (CCMAR)info:eu-repo/semantics/publishedVersio
Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making
<div><p>Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making.</p></div
- …
