272 research outputs found

    Probing hadronic formation times with antiprotons in p+A reactions at AGS energies

    Get PDF
    The production of antiprotons in p+Ap+A reactions is calculated in a microscopic transport approach employing hadronic and string degrees of freedom (HSD). It is found that the abundancies of antiprotons as observed by the E910 Collaboration in p+Ap+A reactions at 12.3 GeV/c as well as 17.5 GeV/c can approximately be described on the basis of primary proton-nucleon and secondary meson-baryon production channels for all targets. The transport calculations demonstrate that the antiproton rapidity distributions for heavy targets are sensitive to the pˉ\bar{p} (or hadron) formation time in the nuclear medium. Within our analysis the data from the E910 Collaboration are reasonably described with a formation time of 0.4−0.8 0.4-0.8 fm/c in the hadron rest frame.Comment: 18 pages, LaTeX, 8 postscript figures; submitted to Nucl. Phys.

    Theoretical study of incoherent phi photoproduction on a deuteron target

    Get PDF
    We study the photoproduction of phi mesons in deuteron, paying attention to the modification of the cross section from bound protons to the free ones with the aim of comparing with recent results at LEPS. For this purpose we take into account Fermi motion in single scattering and rescattering of the phi to account for phi absorption on a second nucleon as well as the rescattering of the proton. We find that the contribution of the double scattering is much smaller than the typical cross section of gamma p to phi p in free space, which implies a very small screening of the phi production in deuteron. The contribution from the proton rescattering, on the other hand, is found to be not negligible compared to the cross section of gamma p to phi p in free space, and leads to a moderate reduction of the phi photoproduction cross section on a deuteron at forward angles if LEPS set up is taken into account. The Fermi motion allows contribution of the single scattering in regions forbidden by phase space in the free case. In particular, we find that for momentum transferred squared close to the maximum value, the Fermi motion changes drastically the shape of d sigma / dt, to the point that the ratio of this cross section to the free one becomes very sensitive to the precise value of t chosen, or the size of the bin used in an experimental analysis. Hence, this particular region of t does not seem the most indicated to find effects of a possible phi absorption in the deuteron. This reaction is studied theoretically as a function of t and the effect of the experimental angular cuts at LEPS is also discussed, providing guidelines for future experimental analyses of the reaction.Comment: 17 pages, 16 figure

    Large‐Amplitude Mountain Waves in the Mesosphere Observed on 21 June 2014 During DEEPWAVE: 1.Wave Development, Scales, Momentum Fluxes, and Environmental Sensitivity

    Get PDF
    A remarkable, large‐amplitude, mountain wave (MW) breaking event was observed on the night of 21 June 2014 by ground‐based optical instruments operated on the New Zealand South Island during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Concurrent measurements of the MW structures, amplitudes, and background environment were made using an Advanced Mesospheric Temperature Mapper, a Rayleigh Lidar, an All‐Sky Imager, and a Fabry‐Perot Interferometer. The MW event was observed primarily in the OH airglow emission layer at an altitude of ~82 km, over an ~2‐hr interval (~10:30–12:30 UT), during strong eastward winds at the OH altitude and above, which weakened with time. The MWs displayed dominant horizontal wavelengths ranging from ~40 to 70 km and temperature perturbation amplitudes as large as ~35 K. The waves were characterized by an unusual, “saw‐tooth” pattern in the larger‐scale temperature field exhibiting narrow cold phases separating much broader warm phases with increasing temperatures toward the east, indicative of strong overturning and instability development. Estimates of the momentum fluxes during this event revealed a distinct periodicity (~25 min) with three well‐defined peaks ranging from ~600 to 800 m2/s2, among the largest ever inferred at these altitudes. These results suggest that MW forcing at small horizontal scales (km) can play large roles in the momentum budget of the mesopause region when forcing and propagation conditions allow them to reach mesospheric altitudes with large amplitudes. A detailed analysis of the instability dynamics accompanying this breaking MW event is presented in a companion paper, Fritts et al. (2019, https://doi.org/10.1029/2019jd030899)

    Circulation of the North Atlantic Ocean from altimetry and the Gravity Recovery and Climate Experiment geoid

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C03005, doi:10.1029/2005JC003128.We discuss the ocean circulation derived from the temporally averaged sea surface height, which is referenced to the recently released geoid from the Gravity Recovery and Climate Experiment (GRACE) mission (GRACE Gravity Model 02 (GGM02)). The creation of a precise, independent geoid allows for the calculation of the reference gravitational potential undulation surface, which is associated with the resting ocean surface height. This reference height is then removed from the temporally averaged sea surface height, leaving the dynamic ocean topography. At its most basic level the dynamic ocean topography can be related to the ocean's surface circulation through geostrophy. This has previously been impracticable because of large uncertainties in previous estimates of the Earth's geoid. Prior geoids included the temporally averaged sea surface from altimeters as a proxy for the geoid and therefore were unsuitable for calculations of the ocean's circulation. Geoid undulations are calculated from the GRACE geoid and compared to those from the NASA Goddard Space Flight Center and National Imagery and Mapping Agency Joint Earth Geopotential Model (EGM96) geoid. Error estimates are made to assess the accuracy of the new geoid. The deep ocean pressure field is also estimated by combining the calculated dynamic ocean topography with hydrography. Finally, the derived circulation is compared to independent observations of the circulation from sea surface drifters and subsurface floats. It is shown that the GGM02 geoid is significantly more accurate for use in estimating the ocean's circulation.This work was supported by grants NNG04GE95G from the National Aeronautics and Space Administration and OCE 01-37122 from the National Science Foundation and the Young Investigator Program award N00014-03-1-0545 from the Office of Naval Research

    Comparison of hip fracture incidence and trends between Germany and Austria 1995-2004: An epidemiological study

    Get PDF
    Mann E, Meyer G, Haastert B, Icks A. Comparison of hip fracture incidence and trends between Germany and Austria 1995-2004: an epidemiological study. BMC Public Health. 2010;10(1): 46.Background Several studies evaluated variations in hip fracture incidences, as well as trends of the hip fracture incidences. Comparisons of trends are lacking so far. We compared the incidence rates and, in particular, its trends between Austria and Germany 1995 to 2004 analysing national hospital discharge diagnosis register data. Methods Annual frequencies of hip fractures and corresponding incidences per 100,000 person years were estimated, overall and stratified for sex and age, assuming Poisson distribution. Multiple Poisson regression models including country and calendar year, age and sex were used to analyse differences in incidence and trend. The difference of annual changes between the two countries was explored using an interaction term (calender year * country). Results Overall, the increase of hip fracture risk was 1.31 fold higher (95% CI 1.29-1.34) in Austria compared to Germany, adjusted for age, sex, and calendar year. The risk increase was comparable for both sexes (males: RR 1.35 (1.32-1.37), females: RR 1.31 (1.29-1.33)). Hip fracture trend from 1995 to 2004 indicates an increase in both countries without a statistically significant difference between Austria and Germany (interaction term: p = 0.67). Conclusion In this study comparing hip fracture incidences and its trend using pooled data, the incidence in Austria was 30% higher compared to its neighbouring country Germany. For both countries a similar increasing trend of hip fracture incidence over the 10-year study period was calculated. The results need confirmation by other studies

    Hip fractures and area level socioeconomic conditions: a population-based study

    Get PDF
    Icks A, Haastert B, Wildner M, et al. Hip fractures and area level socioeconomic conditions: a population-based study. BMC Public Health. 2009;9(1):114.Background: Only a limited number of studies have analyzed the association between hip fracture incidence and socioeconomic conditions. Most, but not all found an association, and results are in part conflicting. The aim of our study was to evaluate the association between hip fractures and socioeconomic conditions in Germany, from 1995 to 2004, on a census tract area level. Methods: We used data from the national hospital discharge diagnosis register and data on socioeconomic and demographic characteristics of 131 census tracts from official statistics. Associations between the hip fracture incidence and socioeconomic conditions were analyzed by multiple Poisson regression models, taking overdispersion into account. Results: The risk of hip fracture decreased by 4% with a 7% increase (about one interquartile range) of non-German nationals. It decreased by 10% with a 6% increased rate of unemployment, increased by 7% with a 2% increase of the proportion of welfare recipients, and also increased by 3% with an increase of the proportion of single parent families of 1.9%. Conclusion: Our results showed weak associations between indicators of socioeconomic conditions at area level and hip fracture risk; the varied by type of indicator. We conclude that hip fracture incidence might be influenced by the socioeconomic context of a region, but further analysis using more specific markers for deprivation on a smaller scale and individual-level data are needed

    The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere

    Get PDF
    The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∌100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∌100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes
    • 

    corecore