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Abstract. We study the photoproduction of φ mesons in deuteron, paying attention to the modification of
the cross section from bound protons to the free ones. For this purpose we take into account Fermi motion
in single scattering and rescattering of φ to account for φ absorption on a second nucleon as well as the
rescattering of the proton on the neutron. We find that the contribution of the double scattering for φ is
much smaller than the typical cross section of γp → φp in free space, which implies a very small screening
of the φ production in deuteron. The contribution from the proton rescattering, on the other hand, is
found to be not negligible compared to the cross section of γp → φp in free space, and leads to a moderate
reduction of the φ photoproduction cross section on a deuteron at forward angles if the LEPS set up is
taken into account. The Fermi motion allows contribution of the single scattering in regions forbidden by
phase space in the free case. In particular, we find that for momentum transferred squared close to the
maximum value, the Fermi motion changes drastically the shape of dσ/dt, to the point that the ratio of
this cross section to the free one becomes very sensitive to the precise value of t chosen, or the size of the
bin used in an experimental analysis. Hence, this particular region of t does not seem the most indicated to
find effects of a possible φ absorption in the deuteron. This reaction is studied theoretically as a function
of t and the results are contrasted with recent experiments at LEPS and Jefferson Lab. The effect of the
experimental angular cuts at LEPS is also discussed, providing guidelines for future experimental analyses
of the reaction.

PACS. 13.60.Le Meson production – 25.20.Lj Photoproduction reactions

1 Introduction

The photoproduction of φ mesons on nucleons has at-
tracted much attention, both experimentally [1–6] and
theoretically [7–14]. Renewed recent efforts at LEPS [15]
have stimulated also theoretical work [16]. The determi-
nation of the strangeness content of the nucleon has been
one of the motivations for these studies. Tests on Pomeron
exchange in this reaction have also been another one of
the motivations. Experimental work on the deuteron has
been done at LEPS [17] looking for dσ/dt close to tmax

and related theoretical work on near threshold φ photo-
production on the deuteron has been done in [18]. Photo-
production of φ mesons in nuclei has also been addressed
in [19], looking at the transparency ratio [20], deducing
from there an enhanced φN cross section in nuclei with re-
spect to the one on a free proton. This issue is of relevance
to theories on vector modification in a nuclear medium [21,
22]. A theoretical calculation of φ photoproduction in nu-
clei has been performed in [23], and compared with the
experimental results of [19]. Very recently there has been

further experimental research concerning φ production in
deuterium. In Ref. [24] φ photoproduction near threshold
from a deuterium target is studied, concluding that the
extracted dσ/dt is consistent with predictions based on
a quasifree mechanism, in contradiction with the claims
done at LEPS in a different momentum transfer region.
Our theoretical results support the findings of Ref. [24]
and shed light on the different results claimed for the
LEPS experiment [17].

In the present work we address the problem of φ photo-
production in the smallest nucleus, the deuteron, contrast
our finding with those of Ref. [24], and point out miss-
ing experimental information for a proper comparison of
our results with the recent measurements of Ref. [17]. By
analogy to the photoproduction in nuclei we also have
here effects of Fermi motion and of φ and proton rescat-
terings, which are studied here in detail and compared to
the data. We find small effects of double scattering for φ
compared to single scattering in consonance with the find-
ings of Ref. [24] except in regions of phase space forbidden
to the scattering on free nucleons. The proton rescatter-
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Fig. 1. Kinematics for the γp → φp reaction.

ing effect, on the other hand, is found to be not negligible
at the forward angles compared to the single scattering
contribution. The Fermi motion effects are also moderate,
but of course they are extremely important in the regions
forbidden to the scattering on free nucleons. This is the
case particularly around the tmax region of the free proton,
where Fermi motion distorts drastically the shape of the
distribution, making this region not well suited to inves-
tigate other possible two body mechanisms. The findings
of the paper for different values of t and the effect of the
angular cuts of the LEPS set up are shown, opening a win-
dow for further reanalysis of the reaction of [17] in regions
better suited to extract relevant information.

2 Formulation

In this section, we explain our approach to calculate the
cross section of the γp → φp and γd → φpn reactions.

2.1 γp → φp reaction

2.1.1 Kinematics

Let us first provide the formulation for the γp → φp reac-
tion. The momenta of the particles in the initial and final
states are shown in Fig. 1. In terms of these variables the
cross section is defined as,

σγp→φp(E
lab
γ )

=
2Mp

4
√

(k · p0)2 −M2
γM

2
p

∫

d3pφ
(2π)3

1

2ωφ

∫

d3pp
(2π)3

2Mp

2Ep

×
∑

λ

∑

λ

|Tγp→φp|2(2π)4δ4(k + p0 − pφ − pp), (1)

where k, p0, pφ, and pp are momenta of initial photon and
proton and final φ and proton, respectively, and Tγp→φp

is the scattering amplitude for the γp → φp reaction.
By means of the two summation symbols, the sum and
average of |T |2 for the polarizations of γ, φ, and initial
and final protons are done. The cross section is a func-
tion of the initial photon energy Elab

γ at the laboratory
frame where the initial proton is at rest. Using the rela-

tion
√

(k · p0)2 −M2
γM

2
p = MpE

lab
γ and performing the

phase-space integration in the center-of-mass frame, one
can obtain,

σγp→φp =
p′cmMp

16π2Elab
γ

√
s

∫

dΩp

∑

λ

∑

λ

|Tγp→φp|2, (2)

with,

pcm =
λ1/2(s, M2

γ , M
2
p )

2
√
s

, p′cm =
λ1/2(s, M2

φ, M
2
p )

2
√
s

, (3)

where pcm (p′cm) is the initial (final) state momenta in
the center-of-mass frame and s the Mandelstam variable
(k + p0)

2. In Eq. (2), Ωp is the solid angle for the final
proton in the center-of-mass frame.

For the φ photoproduction, the differential cross sec-
tion dσ/dt, with Mandelstam variable t = (pφ − k)2, is an
important observable in the experiments [15,17]. In the
center-of-mass frame of the γp → φp reaction, t is written
as

t = M2
φ − 2pcm(ω

cm
φ − p′cm cos θp), (4)

with θp being the angle between the incident photon and

the φ meson momenta, and ωcm
φ =

√

M2
φ + p′cm the φ

energy. The maximum and minimum values of t, tmax and
tmin, are,

tmax(s) = M2
φ − 2pcm(ω

cm
φ − p′cm), (5)

tmin(s) = M2
φ − 2pcm(ω

cm
φ + p′cm), (6)

respectively. Now using the relation,

dt = 2pcmp
′
cmd cos θp, (7)

Eq. (2) can be written as follows:

dσγp→φp

dt
=

Mp

16πpcmElab
γ

√
s

∑

λ

∑

λ

|Tγp→φp|2, (8)

where we have performed the azimuthal angle integration.

2.1.2 Scattering amplitude

In this section we give details on the scattering amplitude
for the γp → φp reaction. In Ref. [15] it was shown that
dσγp→φp/dt has an exponential dependence as a function
of t. To take this into account we use a phenomenological
amplitude given by,

Tγp→φp = ap(s) exp(bt̃/2)× ǫµ(γ)ǫ
µ(φ), (9)

with t̃ = t − tmax. Here ap is a factor which determines
the strength of the total cross section. Based on Ref. [25],
we take the following s dependence for the factor ap:

ap(s) = α

(

s

GeV2

)β
[

1 +Rae
−Rb(E

lab

γ (s)−Rc)
2
]1/2

, (10)
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Fig. 2. Kinematics for the γd → φpn reaction.

with parameters α = 0.0167 GeV−1, β = 2.29, Ra = 0.71,
Rb = 16.5 GeV−2, and Rc = 2 GeV, so as to reproduce
the experimental data [15], and the photon energy Elab

γ in

ap is evaluated as Elab
γ = (s−M2

p )/2Mp, as a function of
s. We note that this form is not same as that in Ref. [25],
where the authors fit the differential cross section dσ/dt
rather than the scattering amplitude. The parameter b in
Eq. (9) is taken from [15] as b = 3.38 GeV−2. On the other
hand, ǫµ(γ) and ǫµ(φ) are the photon and φ polarization
vectors, respectively. In this study we take the Coulomb
gauge for the electromagnetic interaction, hence, Eq (9) is
rewritten as,

Tγp→φp = −ap(s) exp(bt̃/2)× ǫ(γ) · ǫ(φ). (11)

For the sum over the polarizations, we have the follow-
ing relations,

∑

λγ

ǫ∗i(γ)ǫj(γ) = δij − kikj

|k|2 , (12)

∑

λφ

ǫ∗µ(φ)ǫν(φ) = −gµν +
pµφp

ν
φ

M2
φ

. (13)

By summing and averaging over the polarizations, we ob-
tain,

∑

λ

∑

λ

|Tγp→φp|2 = |ap|2 exp(bt̃)
[

1 +
|pφ|2
2M2

φ

sin2 θp

]

,

(14)

Note that the spin component of the proton does not ap-
pear in this phenomenological form of the cross section.

2.2 γd → φpn reaction

2.2.1 Kinematics

Now let us provide the formulation for the γd → φpn
reaction. The cross section for the three-body final state
is written as [26],

σγd→φpn(E
lab
γ )

=
MpMn

4Elab
γ

√
stot

1

(2π)4

∫

dMpn|pφ||p ∗
p |
∫ 1

−1

d cos θφ

∫

dΩ∗
p

×
∑

λ

∑

λ

|Tγd→φpn|2. (15)

Here stot = (k + pd)
2 is the Mandelstam variable with

the initial photon and deuteron momenta, k and pd, re-
spectively, Mpn the p-n invariant mass, pφ and θφ the φ
momentum and the scattering angle between the incident
photon and the final φ in the total center-of-mass frame,
respectively, and p ∗

p and Ω∗
p the proton momentum and

the proton solid angle in the p-n center-of-mass frame,
respectively.

In order to make connection with the work of [17]
we change the integral variables from Mpn and cos θφ to
tφ ≡ (pφ − k)2 and uφ ≡ (pφ − pd)

2 with the φ momen-
tum pφ. For this purpose we use the following kinematical
relations,

stot + tφ + uφ = M2
d +M2

φ +M2
pn, (16)

stot − 2ωcm
φ

√
stot +M2

φ = M2
pn, (17)

tφ = M2
φ − 2Ecm

γ (ωcm
φ − |pφ| cos θφ), (18)

where Ecm
γ is the photon energy in the total center-of-

mass frame, and φ energy ωcm
φ =

√

M2
φ + |pφ|2. Since stot

is fixed and the masses M2
d and M2

φ are constant, we have

from Eq. (16),

∂Mpn

∂tφ
=

∂Mpn

∂uφ
=

1

2Mpn
. (19)

In addition, since ωcm
φ and |pφ| are functions of tφ and uφ,

we have from Eq. (18),

∂ cos θφ
∂tφ

=
ωcm
φ

4Ecm
γ

√
stot|pφ|3

(tφ −M2
φ + 2Ecm

γ ωcm
φ )

+
1

2Ecm
γ |pφ|

(

1−
Ecm

γ√
stot

)

, (20)

∂ cos θφ
∂uφ

=
ωcm
φ

4Ecm
γ

√
stot|pφ|3

(tφ −M2
φ + 2Ecm

γ ωcm
φ )

+
1

2Ecm
γ |pφ|

(

−
Ecm

γ√
stot

)

. (21)

Here we have used the relation,

∂|pφ|
∂tφ

=
∂|pφ|
∂uφ

=
∂|pφ|
∂ωcm

φ

∂ωcm
φ

∂Mpn

∂Mpn

∂tφ
= −

ωcm
φ

2
√
stot|pφ|

,

(22)
where ∂ωcm

φ /∂Mpn = −Mpn/
√
stot is evaluated from Eq. (17).

As a consequence, we have,

dMpnd cos θφ = J(Mpn, cos θφ; tφ, uφ)dtφduφ (23)

with the Jacobian,

J(Mpn, cos θφ; tφ, uφ) =
1

4Ecm
γ Mpn|pφ|

. (24)
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Now we can write down the final form of the total cross
section for the γd → φpn reaction as,

σγd→φpn(E
lab
γ ) =

MpMn

16(Elab
γ )2Md

1

(2π)4

∫

dtφ

∫

duφ

|p ∗
p |

Mpn

×
∫

dΩ∗
p

∑

λ

∑

λ

|Tγd→φpn|2, (25)

where we have usedEcm
γ

√
stot = Elab

γ Md. Or, equivalently,
we have,

dσγd→φpn

dtφ
=

MpMn

16(Elab
γ )2Md

1

(2π)4

∫ uφ,max

uφ,min

duφ

|p ∗
p |

Mpn

×
∫

dΩ∗
p

∑

λ

∑

λ

|Tγd→φpn|2, (26)

with uφ,min and uφ,max the minimum and maximum value
of uφ for fixed tφ,

uφ,min = M2
φ +M2

d + (Mp +Mn)
2 − stot − tφ, (27)

uφ,max = 2M2
φ +M2

d − 2
√
stotω

′
φ − tφ, (28)

ω′
φ =

√

p′2φ +M2
φ, p′φ =

M2
φ − tφ

4Ecm
γ

−
M2

φE
cm
γ

M2
φ − tφ

, (29)

where uφ,min (uφ,max) is achieved in the case that Mpn has
its minimum (maximum) value with fixed tφ (see Eq. (16)).
From the kinematics, Mpn takes values between,

(Mp +Mn)
2 ≤ M2

pn ≤ M2
φ + stot − 2

√
stotω

′
φ. (30)

We note that both uφ,min and uφ,max depend on tφ. We
also write down the minimum and maximum tφ of the
γd → φpn reaction, tφ,min and tφ,max, which will be needed
for Eq. (25), as,

tφ,min = M2
φ − 2Ecm

γ (ωmax + pmax), (31)

tφ,max = M2
φ − 2Ecm

γ (ωmax − pmax), (32)

with,

ωmax =
√

p2max +Mφ, (33)

pmax =
λ1/2(stot, M

2
φ, (Mp +Mn)

2)

2
√
stot

. (34)

Here pmax corresponds to the maximum momentum for
the φ in the total center-of-mass frame, in which Mpn =
Mp +Mn.

2.2.2 Scattering amplitude

In this section we develop the formalism to obtain the scat-
tering amplitude for the γd → φpn reaction. Since our aim
is to compare our results with [17], where the cross section
on the proton of the deuteron is singled out, we also select

T 
ss
1

γ
p n

φ

np

T 
ds
1

T 
ds
2

γ
p n

φ

φ

np

(a) T ss (b) T ds

Fig. 3. Diagrams for the calculatin of γd → φpn reaction.

from the full model of the γd → φpn the terms where there
is primary production of the φ on the proton. It is easy
to extend this formulation to a case of the neutron of the
deuteron in the same way as the proton case. The φ pho-
toproduction amplitude from the proton of the deuteron
is obtained from the mechanisms depicted in Fig. 3. The
diagram of the left represents the single scattering ampli-
tude, T ss. The diagram of the right represents the double
scattering amplitude, T ds. Modification of the φ photo-
production amplitude on the proton of the deuteron with
respect to that on a free proton would be attributed to
this double scattering amplitude, as well as to Fermi mo-
tion and binding effects associated to the deuteron wave
function. We will see later that T ss and T ds are correlated
destructively with each other. Hence, we expect that T ds

decreases the cross section of the impulse approximation.
The evaluation of the amplitude including the deuteron

wave function is given in [27], where the authors discussed
theK−d → πΣn reaction. Following [27] we obtain for the
impulse approximation amplitude,

T ss = T ss
1 × ϕ̃(|pn − pd/2|), (35)

written in terms of the elementary γp → φp amplitude T ss
1

and the deuteron wave function ϕ̃ in momentum space.
The elementary γp → φp amplitude has already appeared
in Eq. (11), and we rewrite it for the case of the single
scattering in the deuteron target as,

T ss
1 = −ap(M

2
φp) exp(bt̃

ss/2)× ǫ(γ) · ǫ(φ), (36)

where,
t̃ss = (pφ − k)2 − tmax(M

2
φp), (37)

with tmax defined in Eq. (5). In the case of the single
scattering for the γd → φpn reaction, ap and tmax are
functions of M2

φp = (pφ + pp)
2 instead of s in the free

γp → φp reaction.
For the deuteron wave function, we neglect the d-wave

component and we use a parameterization of the s-wave
component given by an analytic function [28] as,

ϕ̃(p) =
11
∑

j=1

Cj

p2 +m2
j

, (38)
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with Cj and mj determined in [29].
Let us now consider the double scattering amplitude.

Following [27], one can show that this amplitude is given
by,

T ds =

∫

d3qex
(2π)3

ϕ̃(|pφ + pn − qex − pd/2|)
q2ex −M2

φ + iMφΓφ
× T ds

1 T ds
2 ,

(39)
where qµex is the exchanged φ meson momentum, T ds

1 the
elementary γp → φp amplitude, and T ds

2 the φn → φn am-
plitude. We note that in general both T ds

1 and T ds
2 depend

on qex and appear inside the qex integration.
Since we are interested in finding the effects from dou-

ble scattering, the important point is to pick up the term
that leads to largest interference with the impulse approx-
imation, accepting, as it is the case, that the largest con-
tribution is given by the single scattering. For this purpose
we take the φn → φn amplitude with the same initial and
final φ polarization. This selects the φn → φn amplitude
that leads to the same polarization structure as Eq. (36)
and hence produces maximum interference with the sin-
gle scattering amplitude. Explicit details on this φn → φn
amplitude are given in Appendix A. Then the elementary
γp → φp amplitude in Eq. (39) is written as,

T ds
1 = −ap((qex + pp)

2) exp(bt̃ ′ ds/2)× ǫ(γ) · ǫ(φ), (40)

with,
t̃ ′ ds = (qex − k)2 − tmax((qex + pp)

2). (41)

Hence both the factors ap and exp(bt̃ ′ ds/2) depend on
qex. Since the double scattering amplitude is quite small
compared to the single scattering one, one can safely ap-
proximate t̃ ′ ds taking into account that the deuteron wave
function ϕ̃(p) takes the largest component when the nu-
cleons are at rest in the rest frame of the deuteron. This
allows us to write (qex + pp)

2 and (qex − k)2 as,

(qex + pp)
2 = (k + p1)

2 ≃ (Elab
γ +Mp −B1/2)

2 − (Elab
γ )2,

(42)

(qex − k)2 = (q0ex − Elab
γ )2 − (p1 − pp)

2

≃ (q0ex − Elab
γ )2 − |pp|2, (43)

where pµ1 is the proton momentum inside the deuteron
in the laboratory frame, and we take p1 ≃ 0 and p01 =
Mp − B1/2, with B1/2 the binding energy for the proton,
which we assume to be half of the deuteron binding energy,
B1/2 = 1.112 MeV, and pp is the final proton momentum

in the laboratory frame. Further, q0ex is approximated in
the laboratory frame as,

q0ex ≃ Elab
γ +Mp −B1/2 − Elab

p , (44)

with Elab
p =

√

M2
p + |pp|2. Then we have,

T ds
1 ≃ −ap(W

2) exp(bt̃ds/2)× ǫ(γ) · ǫ(φ), (45)

with,

t̃ds = (q0ex − Elab
γ )2 − |pp|2 − tmax(W

2), (46)

W 2 = (Elab
γ +Mp −B1/2)

2 − (Elab
γ )2, (47)

with q0ex given by Eq. (44). Since T ds
1 in Eq. (45) no longer

depends on qex, we can extract T ds
1 outside of the qex

integration in Eq. (39).

Next we consider T ds
2 , which corresponds to the φn →

φn amplitude. The details of this amplitude are shown
in the Appendix A. As will be clear below, it is through
the imaginary part of this amplitude that T ds interferes
destructively with the single scattering, once the dominant
on-shell part of the intermediate φ is taken in T ds. In the
Appendix A we show that ImT ds

2 can be approximated
by taking qex = pφ if we are concerned about forward φ
production as one has in the experiment. Yet, since ϕ̃(p) is
very sensitive to the momentum, we do not take qex = pφ

in the argument of ϕ̃(p) in Eq. (39). This approximation
allows us to factorize T ds

2 outside the integral of Eq. (39),
as we had done with T ds

1 before.

Now we have only the φ meson propagator and the
deuteron wave function inside the qex integral of Eq. (39).
For the φ meson propagator, we take its imaginary part,
keeping the φ on-shell, as in Glauber theory, hence,

1

q2ex −M2
φ + iMφΓφ

≃ −iπδ(q2ex −M2
φ). (48)

Using this approximation, one can perform the qex inte-
gration in the laboratory frame as,

− iπ

∫

d3qex
(2π)3

δ(q2ex −M2
φ)ϕ̃(|pφ + pn − qex|)

=
−iq

8π

∫ 1

−1

d cos θq ϕ̃

(

√

v2 + q2 − 2vq cos θq

)

= −i

11
∑

j=1

Cj

16πv
ln

(

(v + q)2 +m2
j

(v − q)2 +m2
j

)

, (49)

where q =
√

q02ex −M2
φ, v = |pφ + pn|, and θq is the an-

gle between qex and pφ + pn in the laboratory frame. To
obtain Eq. (49), we have used pd = 0 in the laboratory
frame and the explicit form of the deuteron wave function
of Eq. (38).

As a consequence, we finally have for the double scat-
tering amplitude,

T ds =T ds
1 × ImT ds

2 (M2
φn)×

11
∑

j=1

Cj

16πv
ln

(

(v + q)2 +m2
j

(v − q)2 +m2
j

)

.

(50)
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Fig. 4. Differential cross sections dσp/dt and dσp∗/dtφ. We
fix Elab

γ = 1.6 GeV. The labels “Free”, “s”, “d”, and “s+d”
indicate the case of the free proton target, the single, double,
and single plus double scattering case of the deuteron target,
respectively.

Then the sum of the amplitudes of the impulse approx-
imation (35) and the double scattering (50) gives us,

T ss + T ds = −ǫ(γ) · ǫ(φ) ×
[

ap(M
2
φp) exp(bt̃

ss/2)ϕ̃(|pn|)

+ ap(W
2) exp(bt̃ds/2)

× ImT ds
2 (M2

φn)×
11
∑

j=1

Cj

16πv
ln

(

(v + q)2 +m2
j

(v − q)2 +m2
j

)]

.

(51)

Note that in Eq. (51) we have already made use of the
fact that in the Appendix A we chose the part of the
φn → φn amplitude with the same initial and final φ po-
larizations. It is important to note that the double scatter-
ing amplitude T ds is real, like T ss, because we have chosen
Eq. (48) and ImT ds

2 . This allows for interference and we
find that this interference is destructive, which has the
physical meaning that the φ produced in the first step
of the double scattering can undergo absorption into the
φn → KY channels.

3 Results

In this section we will show results for σp for the free
γp → φp reaction and for the γd → φpn, but only for
the mechanism where the γ strikes a proton first, as have
discussed earlier. We refer to this latter cross section as
σp∗ , which one would like to compare with the σp∗ exper-
imental cross section.

3.1 Differential cross sections

First we show in Fig. 4 the differential cross sections dσp/dt
and dσp∗/dtφ at Elab

γ = 1.6 GeV without any angular
cuts.

As one can see from Fig. 4, the range of tφ for the
deuteron target is wider than for the proton. This is a
simple consequence of having a different reaction, γp → φp
or γd → φpn, where the second one has three particles
in the final state and different mass for the target. The
limits in either case were given in Eqs. (5) and (6) for the
proton and Eqs. (31) and (32) for the deuteron. At Elab

γ =

1.6 GeV, these values are tmin = −0.69 GeV2 and tmax =
−0.36 GeV2 for the proton and tφ,min = −2.17 GeV2 and

tφ,max = −0.19 GeV2 for the deuteron, respectively.

In addition, we should note that at the minimum and
maximum values of t for the proton target case the final
state phase-space of the reaction γp → φp is finite with a
sharp drop to zero, whereas for the deuteron target case
the final state phase-space of the reaction γd → φpn goes
smoothly to zero. This is a consequence of having three
particles in the final state for the deuteron target case.
This is shown in Fig. 4 as a smooth decrease of dσp∗/dtφ
around tφ,min = −2.17 GeV2 and tφ,max = −0.19 GeV2.

For the deuteron target the double scattering ampli-
tude (see Fig. 3(b)), relatively to single scattering, con-
tributes more to dσp∗/dtφ in the large |tφ| region. This is
due to the fact that the large momentum transfer |tφ| is
achieved only by the large Fermi momentum components
in the single scattering. However, in the double scattering
this momentum transfer can be split between two nucle-
ons and it is easier to accommodate. Here we also note
that the tφ dependence is different for single and double

scatterings, and the factor ebt̃
ss

strongly suppresses the
single scattering contribution in the large tφ region, which
is smeared by the split of the momentum transfer in the
double scattering. In the small |tφ| (. 1GeV2) region,
on the other hand, the single scattering amplitude domi-
nates dσp∗/dtφ. Indeed, here one needs only small Fermi
momentum components for which the deuteron wave func-
tion has its maximum. This result is one of the important
findings of the present work. We see that the effect of the
double scattering is basically negligible at tφ ≃ tφ,max by
comparing the curve “s” and “s+d” (where the interfer-
ence appears). The double scattering alone is less than one
per thousand and the interference around tmax is less than
7%. The smallness of the double scattering contribution
was hinted in Ref. [18] from the fact that the basic exper-
imental information on this reaction was reproduced in
terms of single scattering alone. In Ref. [25] the formalism
for double scattering was developed for coherent φ pho-
toproduction in the deuteron, but no explicit evaluation
was done. To the best of our knowledge, this is the first
explicit evaluation of the contribution of double scattering
for this reaction.

For each photon energy, we show the differential cross
sections in Fig. 5, where we plot dσ/dt in the |t| ≤ 0.8GeV2

region, so as to clarify the behavior of the differential cross
sections around the small |t| region. As one can see from
the figure, dσp∗/dtφ shows the smooth decrease around
tφ,max, which is not seen in dσp/dt around tmax. Also we
note that in this tφ region for the γd → φpn reaction the
double scattering amplitude interferes destructively with
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Fig. 5. Differential cross sections dσp/dt and dσp∗/dtφ as functions of t (tφ) for different E
lab
γ . Solid and dashed lines indicate

the single and single plus double scattering case of the deuteron target, and dash-doted line the case of the free proton target,
respectively.

the single scattering amplitude, although dσp∗/dtφ is dom-
inated by the single scattering amplitude.

The results that we find about the accuracy of the
single scattering to reproduce the photoproduction cross
section in deuteron agree with the conclusions obtained in
Ref. [24].

3.2 Nucleon rescattering effects

In the previous subsection we have shown the differential
cross sections for the reactions γp → φp and γd → φpn.
From our results we have found that the “in-medium” φ
propagation in deuteron, which is realized as a φn → φn
rescattering in the reaction, has only small contributions
to the suppression of the cross section dσp∗/dtφ compared
to dσp/dt.

Next, let us consider another double-scattering contri-
bution to the cross section dσp∗/dtφ, that is, the nucleon
rescattering effects. In the deuteron target case, this can
be taken into account by considering a pn → pn rescat-
tering as a final state interaction, which is diagrammat-
ically shown in Fig. 6. The scattering amplitude can be
evaluated in an analogous way as the φ propagation di-
agrammatically shown in Fig. 3(b), and can be written

T 
pn
1

T 
pn
2

γ
p n

p

n

pφ

Fig. 6. Diagrams for the nucleon rescattering effects in γd →
φpn reaction.

as,

T pn =T pn
1

∫

d3q′ex
(2π)3

Mp

E′
ex

ϕ̃(|pp + pn − q ′
ex|)

q′0ex − E′
ex + iǫ

T pn
2 (Mpn, θpn),

(52)

where,

T pn
1 = −ap(W

2) exp(bt̃pn/2)× ǫ(γ) · ǫ(φ), (53)

t̃pn = (pφ − k)2 − tmax(W
2), (54)
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q′0ex = Elab
γ +Mp −B1/2 − ωlab

φ , (55)

E′
ex =

√

M2
p + |q′

ex|2, (56)

with W 2 defined in Eq. (47) and the φ energy in the lab-
oratory frame ωlab

φ . The pn → pn scattering amplitude,

T pn
2 , depends on the p-n invariant mass Mpn as well as

the scattering angle θpn in the p-n center-of-mass frame,
and will be determined later. For the proton propagator
we use an “on-shell” approximation,

Mp

E′
ex

1

q′0ex − E′
ex + iǫ

→ −2iπMpδ((q
′
ex)

2 −M2
p ), (57)

as for the φ propagator in the φ exchange amplitude. Then
the scattering amplitude can be rewritten as,

T pn =
−iMpT

pn
1

(2π)2

∫ ∞

0

d|q ′
ex||q ′

ex|2δ(|q ′
ex|2 +M2

p − (q′0ex)
2)

×
∫

dΩ′
exϕ̃(|pp + pn − q ′

ex|)T pn
2 (Mpn, θpn)

=
−iMpT

pn
1

8π2

√

q′0ex −M2
p

∫

dΩ′
exϕ̃(|pp + pn − q ′

ex|)

× T pn
2 (Mpn, θpn). (58)

Here we emphasize that the solid angle Ωex and the mo-
menta pp, pn, and q ′

ex are evaluated in the laboratory
frame, whereas θpn is evaluated in the p-n center-of-mass
frame as cos θpn = (q ′

ex · pp)pn/(|q ′
ex||pp|)pn.

For the determination of the pn → pn scattering am-
plitude, we take the following procedure. First, in order to
take into account the angular dependence we parameterize
the pn → pn differential cross section as follows:

dσpn→pn

dΩpn
(Mpn, θpn) = A(Mpn) + B(Mpn) cos

2 θpn. (59)

Here spin average and sum are assumed to be taken in
the initial and final states, respectively. The parameters
A and B are determined so as to reproduce the differential
cross section. In this study we use experimental data for
the total cross section from [26] and model calculation for
the differential cross section at θpn = 90 degrees from [30].
Next we evaluate the real part of the pn → pn scattering
amplitude by assuming that the magnitude of the real part
is larger than that of the imaginary part and that the real
part dominates the cross section, which is certainly the
case at low energies, of relevance to the present problem,
where ImT pn

2 goes to zero:

ReT pn
2 (Mpn, θpn) =

√

A+ B cos2 θpn
2πMpn

MpMn
. (60)

The imaginary part of the pn → pn amplitude, on the
other hand, is evaluated so as to satisfy the optical theo-
rem and to have the same angular dependence as the real
part as,

ImT pn
2 (M2

pn, θpn)

= −
√

A+ B cos2 θpn
A+ B

ppncmMpn

2MpMn
σpn→X(Mpn), (61)

where ppncm is the center-of-mass momentum of the p-n sys-
tem and the pn → X total cross section σpn→X is obtained
by fitting the experimental data given in [26].

Now let us see how the whole γd → φpn reaction is
affected by the pn → pn rescattering effect, for which the
amplitude can be expressed as,

T pn =
MpT

pn
1

8π2

√

q′0ex −M2
p

∫

dΩ′
exϕ̃(|pp + pn − q ′

ex|)

× [ImT pn
2 (Mpn, θpn)− iReT pn

2 (Mpn, θpn)]. (62)

First, we note that the first scattering amplitude, T pn
1 ,

shows the same tφ = (pφ − k)2 dependence as the impulse
approximation, T ss. This indicates that, in contrast to the
φ rescattering, the pn rescattering effect has a possibility
to become large in the small |tφ| region. Next, the imag-
inary part of the pn → pn amplitude, ImT pn

2 , interferes
destructively with the single scattering contribution, as
one can see from comparing Eqs. (51) and (62) (note that
ImT pn

2 ≤ 0 due to the optical theorem). This means that
in the reaction γd → φpn the final-state proton and neu-
tron are distorted by the pn rescattering, changing direc-
tions of the final proton and neutron with regard to single
scattering. However, the cross section for the γd → φpn
should not be changed by the inclusion of the pn rescat-
tering if one observes the final-state proton and neutron in
the whole solid angle (or equivalently one does not observe
the proton and neutron), since the proton and neutron
cannot disappear in the rescattering process, in contrast to
the φn → φn rescattering where only the large φ absorp-
tion part of the amplitude was considered (see Appendix).
The recovery of the cross section after the pn → pn rescat-
tering is realized by the term containing the real part of
the pn amplitude, ReT pn

2 , which is the sole pure imagi-
nary term in Eq. (62) and is added incoherently to the
γd → φpn cross section, compensating the destructive in-
terference of the term containing ImT pn

2 .
The numerical results of γd → φpn cross section with

the coherent sum of the three amplitudes (one single and
two double scatterings, φ and proton exchanges), are shown
in Fig. 7 by the dashed line. The contribution only from
the proton rescattering is also plotted as the dotted line.
As one can see from Fig. 7, the values of the cross sec-
tion are almost unchanged by the inclusion of the proton
rescattering effect. This takes place due to, as explained
before, the competition between the imaginary part of the
pn → pn amplitude, which produces destructive interfer-
ence with the single scattering, and the real part of the
pn → pn amplitude, which contributes incoherently to the
cross section.

However, the contribution from the proton rescatter-
ing itself is not negligible compared to the cross section
only with the single scattering, as seen by the dotted line
in Fig. 7. It is important to note that the contribution
from the proton rescattering gets large as tφ approaches
the tφ,max. One of the reason is that the amplitude T pn

contain a factor exp(bt̃pn/2), which shows the same tφ de-
pendence as the single scattering amplitude and becomes
large as tφ goes close to tφ,max. In addition to this, we
note that the magnitude of the pn → pn amplitude T pn

2
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Fig. 7. Differential cross sections dσp/dt and dσp∗/dtφ as functions of t (tφ) for different E
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γ . Solid, dashed, and dotted lines
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Fig. 8. Maximal and minimal values of the achievable p-n
invariant mass Mpn for the γd → φpn reaction in each photon
energy.

gets large for tφ → tφ,max. This is because, in the region
tφ ≃ tφ,max the p-n invariant mass Mpn is very close to the
threshold Mp +Mn, as one can see from Fig. 8, in which
the maximal as well as the minimal values of the achiev-

γ p

n

φp

n

γ p

n

φp

n

(a) (b)

Fig. 9. Kinematics for the γd → φpn reaction at tφ ≃ tφ,max

with (a) photon energy close to the φ photoproduction thresh-
old, and (b) appropriately large photon energy. Length of the
arrows corresponds to magnitude of momenta.

able Mpn for fixed tφ in each photon energy are plotted.
Since the cross section grows rapidly as the p-n invariant
mass gets close to the threshold [26] and the pn → pn am-
plitude is determined from the pn → pn cross section as
in Eqs. (60) and (61), the pn → pn scattering amplitude
also grows rapidly as the invariant mass Mpn approaches
the threshold, or equivalently tφ gets close to tφ,max.
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Fig. 10. Differential cross section dσp/dt as a function of t for different Elab
γ . The solid and dashed lines, and shaded area

indicate the case without any angular cuts, with the φ cut, and with the φ and proton cuts, respectively.

We also note that the proton rescattering effect in-
creases as the photon energy increases. The reason why
this occurs is that the difference between tφ,max and tmax,
the highest value of t = (pφ−k)2 for the free proton target
case, becomes small (as one can see from Fig. 5) and hence
Mpn (tφ) can easily go close to the threshold Mp + Mn

(tφ,max) without help by the Fermi motion. In order to
see this, we schematically show the reaction kinematics
for γp∗ → φp with tφ ≃ tmax in the photon-bound proton
center-of-mass frame in Fig. 9, where the Fermi motion is
neglected. For the photon energy close to the φ photopro-
duction threshold [Fig. 9(a)], Mpn is large at tφ ≃ tmax

because after the reaction the neutron momentum is large
while the proton momentum is small in the photon-bound
proton center-of-mass frame. In this photon energy re-
gion, one can go close to the threshold Mpn → Mp +Mn

(tφ → tφ,max) by the help of high momentum components
of the Fermi motion. For higher photon energy [Fig. 9(b)],
on the other hand, Mpn is very close to the threshold at
tφ ≃ tmax because the neutron and proton momenta after
the reaction are very similar to each other. Hence, in this
photon energy region one can go close to the threshold
Mpn → Mp + Mn (tφ → tφ,max) without large momenta
of the Fermi motion compared to the photon energy close
to the φ photoproduction threshold. This means that the
proton rescattering contribution becomes large as the pho-

ton energy becomes higher as shown in the dotted line in
Fig. 7, recalling that the pn → pn amplitude gets much
larger if one approaches the threshold, Mpn → Mp +Mn

(tφ → tφ,max).

3.3 Angular cuts for charged particles

In the previous subsection we have shown the differential
cross sections for the reactions γp → φp and γd → φpn.
In the LEPS experiments these reactions are identified
by detecting charged particles by the spectrometer in the
forward angles in the laboratory frame. Hence, let us now
perform the angular cuts for the charged particles in the
evaluation of the cross section such that we can compare
with the LEPS experiment.

We take the angular cuts so as to keep Θ ≤ 20 degrees,
where Θ is the angle between the momenta of the incident
photon and the charged particle in the laboratory frame.

In our study, the charged particles to which we should
apply the cut are the final proton andK+K−, which come
from φ decay. For the proton angular cut, we can simply
restrict the final state phase-space so that the final proton
comes into the angle Θ ≤ 20 degrees. We refer to this cut
as the proton cut. For the K+ and K− angular cuts, on
the other hand, one needs some consideration, since we
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Fig. 11. Differential cross section dσp∗/dtφ for a bound proton in the deuteron as a function of tφ for different Elab
γ . The solid

and dashed lines, and shaded area indicate the case without any angular cuts, with the φ cut, and with the φ and proton cuts,
respectively.

do not explicitly have the final K+ and K−, but we have
the φ. Here we choose the following method for the K+

and K− angular cuts; in each event we assume that the
K+ and K− go out with spherical symmetry in the φ
rest frame with momentum ≃ 127 MeV/c, regardless of
the polarization of the φ. Next, we perform the Lorentz
boost from the φ rest frame to the laboratory frame and
evaluate the probability that both the K+ and K− come
into the angle Θ ≤ 20 degrees. Then we multiply by this
probability the cross sections in order to reproduce the
K+ and K− angular cuts. We refer to this as the φ cut.

Now we show the angle-cut differential cross section
for the γp → φp reaction, dσp/dt, in Fig. 10. First of all,
one can see that the φ cut suppresses dσp/dt in the large
|t| region at any photon energies. For the region close to
t = tmax, however, dσp/dt is not affected by the φ cut at
any photon energy, because in this region the φ goes in
the forward direction in the laboratory frame with suffi-
ciently large momentum1. Hence, the LEPS experiment

1 Note that both the K+ and the K− come into the angle
Θ ≤ 20 degrees if the φ has sufficiently large momentum in the
forward direction in the laboratory frame, since the transverse
momenta of the kaons coming from φ decay in the φ rest frame
are restricted to less than 127MeV/c.

can detect the whole φ photoproduction events in the re-
gion close to t = tmax.

Then, one can see that the proton cut does not change
dσp/dt at Elab

γ = 1.6 GeV. This is because this photon
energy is very close to the threshold for the φ photopro-
duction so that the final proton, which is almost at rest
in the center-of-mass frame, can come into the Θ ≤ 20
degrees without large transverse momentum.

The proton cut produces changes in dσp/dt for pho-
ton energy bigger than Elab

γ ≃ 1.8 GeV. The cut pro-
duces null cross section in the middle of the |t| region,
that is the region where the final proton does not go for-
ward nor backward in the center-of-mass frame. In this
region the final proton has large transverse momentum,
and, hence, the proton goes out of the spectrometer in
the LEPS experiment. In the case that the φ goes forward
in the center-of-mass frame, the proton cut has no effects,
since the final proton goes backward in the center-of-mass,
so the Lorentz boost from the center-of-mass frame to the
laboratory frame keeps the proton inside the angle Θ ≤ 20
degrees. We should note that as Elab

γ increases, the region
with null cross section that the proton cut produces be-
comes larger, since the maximal value of the transverse
momentum of the final proton also increases.
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Fig. 12. Differential cross section dσp∗/dtφ for a bound proton in the deuteron as a function of tφ for different Elab
γ . The

solid and dashed lines indicate single scattering and single plus two double scattering (φ and proton exchanges) contributions,
respectively, with only φ cut. The dotted and dash-dotted lines indicate single scattering and single plus two double scattering
(φ and proton exchanges) contributions, respectively, with both φ and proton cuts.

For the free proton target γp → φp reaction, however,
one does not need to detect the final proton by the spec-
trometer; in this reaction one can identify the final proton
by using the missing mass method. Therefore, the proton
cut is not implemented in the experiments in this reaction
and theoretically we should calculate dσp/dt only with the
φ cut. As one can see, only with the φ cut dσp/dt is sup-
pressed in the large |t| region, whereas it is not affected
in the region close to t = tmax. Should one wish to obtain
dσp/dt experimentally for the case without angular cuts,
one should make acceptance corrections, which were done
in [15].

Now let us show the effects of the angular cut on the
γd → φpn reaction in Fig. 11, where only the single scat-
tering is taken into account. One of the important features
from Fig. 11 is that at any photon energy the φ cut does
not produce changes in the cross section in the region close
to tφ = tφ,max, like in the γp → φp case, whereas the φ
cut changes the cross section in the large |tφ| region. This
suggests that all of the K+K− from the φ can go into the
LEPS spectrometer in the region close to tφ = tφ,max.

The proton cut effects, on the other hand, appear above
the photon energy Elab

γ ≃ 1.8 GeV. This proton cut, how-

ever, does not completely suppress dσp∗/dtφ, as it was the
case in the γp → φp reaction. The finite dσp∗/dtφ with the
proton cut is caused by the Fermi motion in the deuteron
bound system. This dσp∗/dtφ suppression due to the pro-
ton cut gets bigger as the photon energy increases, the
same as for the γp → φp reaction.

It is important to keep in mind this suppression cre-
ated by the proton cut. Namely, in the γd → φpn reaction
in the LEPS experiment the γp∗ → φp reaction is identi-
fied by detecting also the final proton in addition to the
K+K− in the spectrometer. Since the double scattering
mechanism of Fig. 3(b) contributes scarcely to dσp∗/dtφ
in the small |tφ| region (see Fig. 5) and the Fermi mo-
tion of the neutron is moderate in the deuteron, one can
identify the γp∗ → φp process in the deuteron by detect-
ing relatively fast protons. However, in order to compare
dσp∗/dtφ for photoproduction on a proton in the deuteron
with dσp/dt, one has to consider the proton cut effects on
dσp∗/dtφ and has to perform the acceptance correction for
the proton cut in addition to that for the φ cut. These ac-
ceptance corrections are done in the experiment, although
no details are given in the paper. In view of the strong tφ
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dependence of the proton cut, details on how the accep-
tance corrections are done would be most advisable.

Next let us examine the angular cut effects on the
double scattering contributions. The effects of the φ and
the proton cuts are shown in Fig. 12. As one can see
from Fig. 12, the two double scattering (φ and proton
exchanges) contributions with the φ cut do not largely
suppress the contribution from the single scattering (solid
and dashed lines). However, if the proton cut is taken into
account the two double scattering contributions suppress
the differential cross section compared to that with only
the single scattering in a larger amount than if only the φ
cut is considered, especially in tφ ≃ tφ,max region (dotted
and dash-dotted lines). Remembering that the φ rescat-
tering effect is small at tφ ≃ tφ,max, this suppression orig-
inates from the proton rescattering effect.

Since the proton cut is important for the suppression of
dσp∗/dtφ, the suppression behavior can be interpreted as
follows: namely, the final proton in forward angle is rescat-
tered by the neutron and the proton direction changes.
Then the number of protons in the forward direction de-
creases, and this is taken into account by the imaginary
part of the pn → pn amplitude T pn

2 . The proton in this
collision is not lost, but it is simply redistributed in other
directions. Technically we saw that this was accomplished
by means of the real part of the pn → pn amplitude T pn

2 .
Then, due to the proton cut in the tφ ≃ tφ,max region,
some of these protons will not reach the LEPS detector.
Furthermore, the proton rescattering effect of forward to
another angle for the proton is larger than that of another
angle to forward for the proton and we see a net suppres-
sion of forward going protons.

In order to see how much the double scattering ef-
fects suppress dσp∗/dtφ compared to the single scattering
contribution, we show the ratio of the differential cross
sections with the three contributions to that with only
single scattering in Fig. 13. In Fig. 13, both the φ and
proton cuts are performed. From the figure, one can see
that the double scattering effects suppress the cross sec-
tion, especially in the tφ ∼ tφ,max region, about to 85%
regardless of the initial photon energy. The ratio is close
to 90% if a bin of ∆t = 0.1 GeV2 is taken, as in [31]. This
small reduction goes in the direction reported in [17] for
the ratio of φ photoproduction on a bound proton inside
the deuteron to the one on a free proton, but is short of
the value around 60% reported there for large energies.
The rapid increase of the ratio at tφ ≃ tφ,max shown in
Fig. 13 is caused by the threshold effect for tφ and gives
no trouble in the differential cross sections themselves.

3.4 Ratio of the cross sections

Now that we have all the results, we try to compare the
ratio of the differential cross sections, (dσp∗/dtφ)/(dσp/dt)
from LEPS experiments [17] with the theoretical results.

In the LEPS experiment, they found a significant di-
version with respect to unity (see Fig. 4 of Ref. [17]). There
they detect the K+K−p in the γd → φpn reaction so as

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05  0

C
ro

ss
 s

ec
tio

n 
ra

tio

t  [GeV2]

Eγ
lab = 1.6 GeV

Eγ
lab = 1.8 GeV

Eγ
lab = 2.0 GeV

Eγ
lab = 2.2 GeV

Fig. 13. Ratio of the differential cross sections dσp∗/dtφ
with three contributions (single scattering and φ- and proton-
exchange amplitudes) to that only with single scattering. Both
φ and proton angle cuts are performed.

to identify the γp∗ → φp in the deuteron and evaluate the
ratio of this cross section to the one on the free proton.

From the theoretical point of view the comparison of
dσ/dt for the proton in the deuteron and the free proton
can be obtained from the ratio of the dashed line and
dashed-dotted line in Fig. 7 for each energy. This is leaving
apart the effect of the φ and proton cuts discussed above,
from where one can expect a reduction of 10% in the ratio.
Of course, one can see that as one approaches tmax, the
ratio changes very fast from values around 0.8 close to
tmax, to around 0.4 at tmax. The ratio becomes infinity if
we go a bit beyond tmax, since the reaction is forbidden
in the free case, but is allowed in the deuteron due to the
Fermi motion.

However, we cannot compare these results with those
obtained in Fig. 4 of Ref. [17], the reason being that the
experimental paper does not provide enough information
to allow for a meaningful comparison. We hope that an
extended version of the concise information given in [17]
can provide these needed details. In order to facilitate this
task we write below the information that we would need
for a proper comparison.

1) How and where is the deuteron wave function taken
into account to remove effects of Fermi motion in [17],
if this is the case?

2) In Fig. 4 of [17] Eeff
γ is used in the x axis without any

comment or definition. We assume that this is not a
misprint, but that indeed the concept of Eeff

γ intro-

duced in [32] is used there2. This concept relies upon
the MMSA (minimum momentum spectator approx-
imation) which approximates the spectator nucleon
momentum as the minimum one without specifying
whether it is a proton or a neutron (see also the reper-
cussion of its use in the analysis of the “Θ+” peak as
discussed in [33]). It is important that the details on

2 This seems to be the case according to the private commu-
nication [31].
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the use of this prescription in the present analysis are
provided.

3) When dealing with Fermi motion close to tmax, the bin-
ning of∆t used to determine dσp∗/dt is also important,
in view of the fast change of the cross section as a func-
tion of tφ close to tmax. On the other hand, the use of
a large binning can lead to other problems of interpre-
tation. Indeed, assume one takes ∆t = 0.1 GeV2, then
for events with tφ = tmax − ∆t, dσp∗/dt has already
fallen to 70% of the value at tmax, as given by Eq. (9).
Similarly, as seen in Fig. 11, the effect of the proton
angle cut at the highest energy Elab

γ = 2.2 GeV leads
to a reduction of dσp∗/dt at tφ = tmax −∆t to about
31% of its value at tmax. The combined effect of the
two would be a reduction by a factor of about 0.1 at
∆t = 0.1 GeV2.

4) Although methods could be devised to eliminate the
contribution to the “proton in deuteron” cross section
from the unwanted case where the proton is a specta-
tor, it should be kept in mind that the Fermi motion
provides a distribution of momenta to these specta-
tor protons, some of which could be observed and be
misidentified as participant protons. Details on how
this problem is avoided would also be most welcome.

5) At some point in the experimental analysis, knowing
the proton momentum will be important. How this mo-
mentum is reconstructed from the observed events in
view of the expected distortion caused by the target
in the detected protons is also a relevant information.
This point becomes more critical once we have shown
that the proton angular cuts are so relevant for the
cross section close to tmax. Furthermore, in view of the
losses in the detection of protons, when the K+ and
K− are detected in coincidence, one should also clar-
ify the statistical situation of these events and how
dσp∗/dt is obtained in this case, providing statistical
and systematic errors.

When this information is provided, we could continue
our work with a meaningful comparison with the data
of [17]. At the present time, this comparison, and the in-
terpretation of the data from our theoretical perspective
is not possible. Yet, we found that the consideration of
proton rescattering in the deuteron, together with the ef-
fect of the proton cut, can produce a moderate reduction
of the medium to free proton φ photoproduction cross sec-
tion of about 10%, which goes in the direction reported
in [17], but falls short of the numbers quoted there.

4 Summary

We have done a study of φ photoproduction on the proton
and on the deuteron, and in particular on a proton in the
deuteron, using an accurate wave function for the deuteron
that accounts for the Fermi motion, which we found to be
very important when studying dσ/dt close to tmax. We
also took into account rescattering of the φ including the
mechanisms that lead to φ absorption and provide realis-
tic values of the φ width in a nuclear medium. We found

that the latter mechanisms are very small. The screening
of the φ production in the deuteron is found to be very
small. This could be consistent with moderate changes of
the screening of the φ production seen in nuclei [19,38,
39]. This conclusion is in agreement with the recent ex-
periment at Jefferson Lab. [24] where the extracted dσ/dt
is consistent with predictions based on the quasifree mech-
anism.

We studied in detail the effects of the φ and proton
cuts to accommodate the theoretical results to the mea-
surements of LEPS, taking into account the LEPS set
up which restricts the detected particles to forward an-
gles. We found that the proton cut, which does not ap-
pear in the free proton case, because its momentum is
reconstructed from the K+ and K− momenta, plays an
important role in the scattering on the deuteron since pro-
tons are detected in this case. The largest effect, even then
rather moderate, was the about 10% reduction in the ratio
of medium to free proton photoproduction cross sections
that we obtain from the consideration of proton rescat-
tering in the deuteron, together with the φ and proton
cuts of the LEPS set up implemented in both of them to
provide a proper comparison.

Finally, we discussed that a comparison of our results
with the experimental ones provided in [17] was not pos-
sible at the present stage due to the absence of relevant
experimental information in [17]. We suggested that a
more detailed experimental paper be written and we listed
the experimental information that would be needed for a
meaningful comparison in the future.
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A φn → φn scattering amplitude

In this Appendix we evaluate the φn → φn scattering
amplitude. Since we are concerned about the absorptive
imaginary part of this amplitude, we take into account
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Fig. 14. Box diagram for φn → φn reaction together with
momentum of each particle. The channels of K, K̄, and Y are
given in Tab. 1.

Table 1. Channels of K, K̄, and Y appearing in Fig. 14. The
Clebsch-Gordan coefficients α, β, and A are also shown.

Channel K K̄ Y α β A

1 K+ K− Σ− 0
√
2 –

2 K+ K− Σ∗− – – −1

3 K0 K̄0 Λ −2/
√
3 1/

√
3 –

4 K0 K̄0 Σ0 0 −1 –

5 K0 K̄0 Σ∗0 – – 1/
√
2

here the same mechanisms that were considered in the
evaluation of the width of the φ in the medium in [34,
35]. These are depicted in Figs. 14 (the box diagram) and
15 (the vertex corrections). Here Y denotes the Λ, Σ and
Σ(1385) (Σ∗) hyperons.

First, we consider the box diagram (Fig. 14) with Λ
and Σ propagation, which is evaluated as,

− iTΛ,Σ
φn→φn

=
∑

Λ,Σ

∫

d4q

(2π)4
i

q2 −m2
K + iǫ

i

(pφ − q)2 −m2
K̄

× i

(p′φ − q)2 −m2
K̄

[−igφǫ
∗
µ(φ)(2q − pφ)

µ]

× Ṽ σ · (q − pφ)
iMY /EY (|p ′

n + p ′
φ − q|)

p′0n + p′0φ − q0 − EY (|p ′
n + p ′

φ − q|) + iǫ

× [−igφǫν(φ)(2q − p′φ)
ν ]Ṽ σ · (p ′

φ − q), (63)

where MY is the mass of the hyperon propagating in the
intermediate state, and EY (p) =

√

M2
Y + p2. The sum-

mation symbol with subscripts Λ and Σ represents the
sum of the contribution from Λ and Σ propagation in the
intermediate states. These channels are explicitly given
in Tab. 1. The φKK̄ coupling constant is denoted by gφ
and is fixed as gφ = 4.57 so as to reproduce the decay
width for φ → KK̄. In Eq. (63) σ are Pauli matrices

for baryon spin. The quantity Ṽ is the coefficient for the
meson-baryon-baryon coupling fixed by the flavor SU(3)
symmetry as,

Ṽ = α
D + F

2f
+ β

D − F

2f
, (64)

with empirical parameters D + F = 1.26, D − F = 0.33,
and f = 1.15fπ with the pion decay constant fπ = 93.0MeV.

The magnutides α and β correspond to SU(3) Clebsch-
Gordan coefficients and are shown in Tab. 1.

In the double scattering diagram of Fig. 3, p ′
φ = qex.

If we consider φ production forward, as in the experiment,
pφ and p ′

φ will be forward and pn and p ′
n will be small.

Therefore, we can approximate the amplitude substituting
qex by pφ, in which case pn ≃ p ′

n ≃ 0. We also discussed
in Sect. 2.2.2 that we were interested in the case where
the polarization of the initial and final φ were the same,
to optimize the interference of T ds with T ss. Hence, we
can take the average amplitude over the φ polarizations
for which we use,

∑

λφ

ǫ∗µ(φ)(2q − pφ)
µǫν(φ)(2q − pφ)

ν =
4

3

[

(pφ · q)2
M2

φ

− q2

]

.

(65)

Note that the approximation done also forces the neutrons
to have the same polarization since,

[(q − pφ) · σ][(pφ − q) · σ] = −|q − pφ|2, (66)

and there is no spin flip term. The independence of this
amplitude on the spin of the second particle is of relevance
to our approach. Indeed, we have used a φ photoproduc-
tion amplitude on the first nucleon which is independent
of the spin of the nucleon. If we had a spin dependent
amplitude the spin structure of the deuteron should in
principle be taken into account. However, if there is only
spin dependence on the first nucleon, the sum over initial
and final polarization for the case of initial nucleons un-
correlated by spin, as we have assumed, or correlated in a
spin = 1 (or zero) state as in the deuteron, give the same
result.

The imaginary part of TΛ,Σ
φn→φn in Eq. (63) is readily

evaluated using the Cutkosky rules suited to our normal-
ization as in [36],

TΛ,Σ
φn→φn → 2iImTΛ,Σ

φn→φn, G(q) → 2iθ(q0)ImG(q), (67)

with G the propagators of the particles which are placed
on the mass-shell, in the present case, the K and Y of
Fig. 14. Hence, we obtain,

ImTΛ,Σ
φn→φn = −1

2

∑

Λ,Σ

∫

d3q

(2π)3
1

2ω(|q|)
MY

EY (|pφ + pn − q|)

×|T1|2×2πδ(p0φ + p0n − EY (|pφ + pn − q|)− ω(|q|))
(68)

with ω(q) =
√

m2
K + q2 and,

|T1|2 =
4

3

(

gφṼ |q − pφ|
M2

φ − 2pφ · q

)2

×
[

(pφ · q)2
M2

φ

−m2
K

]

, (69)

where we have used q2 = m2
K = m2

K̄
.

We can see that Eq. (68) is the phase-space integral for
the cross section of φn → KY with the transition ampli-
tude T1 up to a normalization. Performing explicitly the
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Fig. 15. Diagrams for the vertex corrections of φn → φn re-
action. The channels of K, K̄, and Y are given in Tab. 1.

|q| integration in the φ-n center-of-mass frame we obtain,

ImTΛ,Σ
φn→φn = −

∑

Λ,Σ

|q|MY

8πMφn

∫ 1

−1

d cos θK |T1|2, (70)

with Mφn =
√

(pφ + pn)2 and θK the scattering angle
between the φ and the K. Eq. (70) is nothing but the ex-
pression of the optical theorem for the reaction mechanism
of Fig. 14.

Next we consider the vertex corrections diagrams of
the φn → φn amplitude shown in Fig. 15 with the Λ and
Σ propagation [34]. Following [37], we obtain for the sum

of the three diagrams the same expression for ImTΛ,Σ
φn→φn

in Eq. (70), substituting |T1|2 by |T2|2 given by3,

|T2|2 = (gφṼ )2

×
[

4

3

1

M2
φ − 2pφ · q

(

|q|2 − pφ · q +
pφ · q
M2

φ

(|pφ|2 − pφ · q)
)

+

(

1 +
|pφ|2
3M2

φ

)]

. (71)

For the contributions with the Λ and Σ propagation in
Figs. 14 and 15, summing Eqs. (69) and (71), we obtain,

ImTΛ,Σ
φn→φn = −

∑

Λ,Σ

|q|MY

8πMφn

∫ 1

−1

d cos θK(|T1|2 + |T2|2).

(72)
Now let us consider Σ∗ propagation. The amplitude

with the Σ∗ propagation can be obtained by replacement
of the coupling constant, spin matrix and mass in the am-
plitudes obtained for the Λ and Σ propagations. The cou-
pling constant forΣ∗ is obtained by an SU(6) quark model
and SU(3) flavor symmetry as,

Ṽ → Ã =
2
√
6

5

D + F

2f
A, (73)

with the Clebsch-Gordan coefficient A given in Tab. 1.
The spin operators in the case of the Σ∗ are the tran-
sition matrices of spin 1/2 to 3/2, S†, which should be

3 We found that one should use (1 + |pφ|2/3M2
φ) instead of

(1 + |q|2/3M2
φ) given as the last term of Eq. (11) in [37].
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Fig. 16. ImTφn→φn as a function of Mφn. Vertical dashed line
represents the φ-n threshold.

used instead of the Pauli matrices σ, and they satisfy the
relation,

SiS†j =
2

3
δij − i

3
ǫijkσ

k, (74)

This gives an extra factor 2/3 since the spin flip part van-
ishes in the equivalent term of Eq. (66). Finally, we obtain
for the imaginary part of the φn → φn amplitude for the
Σ∗ propagation

ImTΣ∗

φn→φn = −
∑

Σ∗

|q|MY

12πMφn

∫ 1

−1

d cos θK(|U1|2 + |U2|2),

(75)
with,

|U1|2 =
4

3

(

gφÃ|q − pφ|
M2

φ − 2pφ · q

)2

×
[

(pφ · q)2
M2

φ

−m2
K

]

, (76)

|U2|2 = (gφÃ)
2

×
[

4

3

1

M2
φ − 2pφ · q

(

|q|2 − pφ · q +
pφ · q
M2

φ

(|pφ|2 − pφ · q)
)

+

(

1 +
|pφ|2
3M2

φ

)]

. (77)

As a consequence, the final form for the imaginary part
of the φn → φn amplitude can be written as

ImTφn→φn(Mφn) = ImTΛ,Σ
φn→φn + ImTΣ∗

φn→φn, (78)

which can be readily evaluated using Eqs. (72) and (75). In
Fig. 16 we show the results that we get for ImTφn→φn as a
function of Mφn. In order to get a feeling for the results in
Fig. 16, rather than calculating an inelastic cross section
which goes to infinity at the φ-n threshold, we give the φ
width in a nuclear medium Γ = −ImTφn→φnρ/ωφ, with
ρ the nuclear matter density. For normal nuclear matter
density, ρ0 = 0.17 fm−3, this gives Γ ≃ 27 MeV at thresh-
old, in agreement with the results obtained in Refs. [33,
34].
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