260 research outputs found

    Optical signature of the pressure-induced dimerization in the honeycomb iridate α\alpha-Li2_2IrO3_3

    Get PDF
    We studied the effect of external pressure on the electrodynamic properties of α\alpha-Li2_2IrO3_3 single crystals in the frequency range of the phonon modes and the Ir dd-dd transitions. The abrupt hardening of several phonon modes under pressure supports the onset of the dimerized phase at the critical pressure PcP_c=3.8 GPa. With increasing pressure an overall decrease in spectral weight of the Ir dd-dd transitions is found up to PcP_c. Above PcP_c, the local (on-site) dd-dd excitations gain spectral weight with increasing pressure, which hints at a pressure-induced increase in the octahedral distortions. The non-local (intersite) Ir dd-dd transitions show a monotonic blue-shift and decrease in spectral weight. The changes observed for the non-local excitations are most prominent well above PcP_c, namely for pressures \geq12 GPa, and only small changes occur for pressures close to PcP_c. The profile of the optical conductivity at high pressures (\sim20 GPa) appears to be indicative for the dimerized state in iridates.Comment: 10 pages, 6 figures; accepted for publication in Phys. Rev.

    High-pressure versus isoelectronic doping effect on the honeycomb iridate Na2_2IrO3_3

    Get PDF
    We study the effect of isoelectronic doping and external pressure in tuning the ground state of the honeycomb iridate Na2_2IrO3_3 by combining optical spectroscopy with synchrotron x-ray diffraction measurements on single crystals. The obtained optical conductivity of Na2_2IrO3_3 is discussed in terms of a Mott insulating picture versus the formation of quasimolecular orbitals and in terms of Kitaev-interactions. With increasing Li content xx, (Na1x_{1-x}Lix_x)2_2IrO3_3 moves deeper into the Mott insulating regime and there are indications that up to a doping level of 24\% the compound comes closer to the Kitaev-limit. The optical conductivity spectrum of single crystalline α\alpha-Li2_2IrO3_3 does not follow the trends observed for the series up to x=0.24x=0.24. There are strong indications that α\alpha-Li2_2IrO3_3 is less close to the Kitaev-limit compared to Na2_2IrO3_3 and closer to the quasimolecular orbital picture. Except for the pressure-induced hardening of the phonon modes, the optical properties of Na2_2IrO3_3 seem to be robust against external pressure. Possible explanations of the unexpected evolution of the optical conductivity with isolectronic doping and the drastic change between x=0.24x=0.24 and x=1x=1 are given by comparing the pressure-induced changes of lattice parameters and the optical conductivity with the corresponding changes induced by doping.Comment: 12 pages, 6 figures, accepted for publication in Phys. Rev.

    mer-Bis[2-(1,3-benzothiazol-2-yl)phenyl-κ2 C 1,N][3-phenyl-5-(2-pyridyl)-1,2,4-triazol-1-ido-κ2 N 1,N 5]iridium(III) deuterochloro­form 3.5-solvate

    Get PDF
    In the title compound, [Ir(C13H9N4)(C13H8NS)2]·3.5CDCl3, the coordination at iridium is octa­hedral, but with narrow ligand bite angles. The bond lengths at iridium show the expected trans influence, with the Ir—N bonds trans to C being appreciably longer than those trans to N. The chelate rings are mutually perpendicular, the inter­planar angles between them all lying within 6° of 90°. All ligands are approximately planar; the maximum inter­planar angles within ligands are ca 10°. The three ordered deuterochloro­form mol­ecules are all involved in C⋯D—A contacts that can be inter­preted as hydrogen bonds of various types. The fourth deuterochloroform is disordered over an inversion centre

    Consistent truncation of d = 11 supergravity on AdS_4 x S^7

    Full text link
    We study the system of equations derived twenty five years ago by B. de Wit and the first author [Nucl. Phys. B281 (1987) 211] as conditions for the consistent truncation of eleven-dimensional supergravity on AdS_4 x S^7 to gauged N = 8 supergravity in four dimensions. By exploiting the E_7(7) symmetry, we determine the most general solution to this system at each point on the coset space E_7(7)/SU(8). We show that invariants of the general solution are given by the fluxes in eleven-dimensional supergravity. This allows us to both clarify the explicit non-linear ansatze for the fluxes given previously and to fill a gap in the original proof of the consistent truncation. These results are illustrated with several examples.Comment: 41 pages, typos corrected, published versio

    Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson

    Full text link
    We explore the implications of a 126 GeV Higgs boson indicated by the recent LHC results for two-Higgs doublet model (2HDM). Identifying the 126 GeV Higgs boson as either the lighter or heavier of CP even neutral Higgs bosons in 2HDM, we examine how the masses of Higgs fields and mixing parameters can be constrained by the theoretical conditions and experimental constraints. The theoretical conditions taken into account are the vacuum stability, perturbativity and unitarity required to be satisfied up to a cut-off scale. We also show how bounds on the masses of Higgs bosons and mixing parameters depend on the cut-off scale. In addition, we investigate whether the allowed regions of parameter space can accommodate particularly the enhanced di-photon signals, ZZ* and WW* decay modes of the Higgs boson, and examine the prediction of the signal strength of Z{\gamma} decay mode for the allowed regions of the parameter space.Comment: To be published in JHEP, 20 pages, 11 figures, Figures and results are updated for the recent LHC result

    Minimizing off-target signals in RNA fluorescent in situ hybridization

    Get PDF
    Fluorescent in situ hybridization (FISH) techniques are becoming extremely sensitive, to the point where individual RNA or DNA molecules can be detected with small probes. At this level of sensitivity, the elimination of ‘off-target’ hybridization is of crucial importance, but typical probes used for RNA and DNA FISH contain sequences repeated elsewhere in the genome. We find that very short (e.g. 20 nt) perfect repeated sequences within much longer probes (e.g. 350–1500 nt) can produce significant off-target signals. The extent of noise is surprising given the long length of the probes and the short length of non-specific regions. When we removed the small regions of repeated sequence from either short or long probes, we find that the signal-to-noise ratio is increased by orders of magnitude, putting us in a regime where fluorescent signals can be considered to be a quantitative measure of target transcript numbers. As the majority of genes in complex organisms contain repeated k-mers, we provide genome-wide annotations of k-mer-uniqueness at http://cbio.mskcc.org/∼aarvey/repeatmap

    Instabilities in crystal growth by atomic or molecular beams

    Full text link
    The planar front of a growing a crystal is often destroyed by instabilities. In the case of growth from a condensed phase, the most frequent ones are diffusion instabilities, which will be but briefly discussed in simple terms in chapter II. The present review is mainly devoted to instabilities which arise in ballistic growth, especially Molecular Beam Epitaxy (MBE). The reasons of the instabilities can be geometric (shadowing effect), but they are mostly kinetic or thermodynamic. The kinetic instabilities which will be studied in detail in chapters IV and V result from the fact that adatoms diffusing on a surface do not easily cross steps (Ehrlich-Schwoebel or ES effect). When the growth front is a high symmetry surface, the ES effect produces mounds which often coarsen in time according to power laws. When the growth front is a stepped surface, the ES effect initially produces a meandering of the steps, which eventually may also give rise to mounds. Kinetic instabilities can usually be avoided by raising the temperature, but this favours thermodynamic instabilities. Concerning these ones, the attention will be focussed on the instabilities resulting from slightly different lattice constants of the substrate and the adsorbate. They can take the following forms. i) Formation of misfit dislocations (chapter VIII). ii) Formation of isolated epitaxial clusters which, at least in their earliest form, are `coherent' with the substrate, i.e. dislocation-free (chapter X). iii) Wavy deformation of the surface, which is presumably the incipient stage of (ii) (chapter IX). The theories and the experiments are critically reviewed and their comparison is qualitatively satisfactory although some important questions have not yet received a complete answer.Comment: 90 pages in revtex, 45 figures mainly in gif format. Review paper to be published in Physics Reports. Postscript versions for all the figures can be found at http://www.theo-phys.uni-essen.de/tp/u/politi

    Challenges in supporting lay carers of patients at the end of life: results from focus group discussions with primary healthcare providers

    Get PDF
    Background: Family caregivers (FCGs) of patients at the end of life (EoL) cared for at home receive support from professional and non-professional care providers. Healthcare providers in general practice play an important role as they coordinate care and establish contacts between the parties concerned. To identify potential intervention targets, this study deals with the challenges healthcare providers in general practice face in EoL care situations including patients, caregivers and networks. Methods: Focus group discussions with general practice teams in Germany were conducted to identify barriers to and enablers of an optimal support for family caregivers. Focus group discussions were analysed using content analysis. Results: Nineteen providers from 11 general practices took part in 4 focus group discussions. Participants identified challenges in communication with patients, caregivers and within the professional network. Communication with patients and caregivers focused on non-verbal messages, communicating at an appropriate time and perceiving patient and caregiver as a unit of care. Practice teams perceive themselves as an important part of the healthcare network, but also report difficulties in communication and cooperation with other healthcare providers. Conclusion: Healthcare providers in general practice identified relational challenges in daily primary palliative care with potential implications for EoL care. Communication and collaboration with patients, caregivers and among healthcare providers give opportunities for improving palliative care with a focus on the patient-caregiver dyad. It is insufficient to demand a (professional) support network; existing structures need to be recognized and included into the care

    Multi-Level Communication of Human Retinal Pigment Epithelial Cells via Tunneling Nanotubes

    Get PDF
    Background: Tunneling nanotubes (TNTs) may offer a very specific and effective way of intercellular communication. Here we investigated TNTs in the human retinal pigment epithelial (RPE) cell line ARPE-19. Morphology of TNTs was examined by immunostaining and scanning electron microscopy. To determine the function of TNTs between cells, we studied the TNT-dependent intercellular communication at different levels including electrical and calcium signalling, small molecular diffusion as well as mitochondrial re-localization. Further, intercellular organelles transfer was assayed by FACS analysis. Methodology and Principal Findings: Microscopy showed that cultured ARPE-19 cells are frequently connected by TNTs, which are not attached to the substratum. The TNTs were straight connections between cells, had a typical diameter of 50 to 300 nm and a length of up to 120 µm. We observed de novo formation of TNTs by diverging from migrating cells after a short time of interaction. Scanning electron microscopy confirmed characteristic features of TNTs. Fluorescence microscopy revealed that TNTs between ARPE-19 cells contain F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of latrunculin-B, led to disappearance of TNTs. Importantly, these TNTs could function as channels for the diffusion of small molecules such as Lucifer Yellow, but not for large molecules like Dextran Red. Further, organelle exchange between cells via TNTs was observed by microscopy. Using Ca2+ imaging we show the intercellular transmission of calcium signals through TNTs. Mechanical stimulation led to membrane depolarisation, which expand through TNT connections between ARPE-19 cells. We further demonstrate that TNTs can mediate electrical coupling between distant cells. Immunolabelling for Cx43 showed that this gap junction protein is interposed at one end of 44% of TNTs between ARPE-19 cells. Conclusions and Significance: Our observations indicate that human RPE cell line ARPE-19 cells communicate by tunneling nanotubes and can support different types of intercellular traffic

    The art of cellular communication: tunneling nanotubes bridge the divide

    Get PDF
    The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes
    corecore