202 research outputs found

    A Case of Essential Thrombocythemia and IgA Nephropathy with Literature Review of the Concurrence.

    Get PDF
    Myeloproliferative neoplasms such as essential thrombocythemia (ET) have been associated with glomerular disease on rare instances. A case of ET associated with immunoglobulin A nephropathy (IgAN) is described in a 57-year-old man with a history of hypertension. Progressively worsening renal function was noted in the patient along with unexplained mild thrombocytosis. Pathological review of renal biopsy identified IgAN concurrently with newly diagnosed JAK2-mutated ET. The patient was started on aspirin therapy and closely monitored for his renal function. A literature review of the association of ET and renal disease revealed nine cases of ET associated with IgAN, focal segmental glomerulosclerosis, and fibrillary glomerulonephritis. Comparison of the pathological features of the renal biopsies within the cases noted mesangial proliferation as a common finding, which has been described to be potentiated by platelet-derived growth factor (PDGF). This commonality may represent a link between ET and glomerular disease which deserves further attention in future cases. Improved management of such cases depends on the recognition of the combined occurrence of ET and glomerular diseases and uncovering the shared pathogenesis between platelets and glomeruli

    Natural Resources Research Institute Technical Report

    Get PDF
    Water temperature is generally considered one of the primary physical habitat parameter determining the suitability of stream habitat for fish species, with effects on the mortality, metabolism, growth, behavior, and reproduction of individuals. In this study we assessed the potential threats of climate change on stream temperatures and flow regimes in Lake Superior tributary streams in Minnesota, USA. The study included deterministic models for stream flow and temperature of three study streams (Amity Creek, Baptism River, Knife River), and regional (empirical) models for specific flow and temperature parameters to give better spatial coverage of the region. Information on stream flow, stream temperature, and land cover was used to develop a brook trout presence/absence model to understand the current pattern of distribution of brook trout and predict future distributions under future climate. The hydrology of north shore streams is mainly driven by air temperature and precipitation. Historical air temperatures in the region have a significant upward trend, particularly since 1980. Global climate model (GCM) outputs project a continued increasing trend in air temperature, with an increase in mean annual air temperature of 2 to 3 °C by 2089. The historical precipitation data shows an increasing trend for total annual precipitation at Duluth and Two Harbors between 1900 and 2010, whereas Grand Marais and Grand Portage do not have a clear trend. Based on an analysis of daily precipitation totals, there is some indication of an increasing trend in the number of days in summer with high precipitation (10-20 cm). Both the GENMOM and the ECHAM5 GCMs project overall increases in precipitation of about 15%, but differ with respect to the seasonal distribution of the precipitation changes. A significant and relatively certain impact of climate change is a projected shift in precipitation from snowfall to rainfall. While an increasing trend in precipitation leads to increasing streamflow, the increasing trend in spring and summer air temperature tends to reduce streamflow (by increasing evapotranspiration). Available streamflow records for north shore streams suggest there may be a decreasing trend in mean annual flow and summer low flow, but the trends are not statistically significant. Future projections of streamflow based on the GCM output were mixed, with the deterministic models projecting moderate increases in average stream flow and summer low flow, while the regression models for project a moderate decrease in low flow. Stream temperature analyses for the three study streams based on GCM climate output give the result of fairly uniform seasonal increases in stream temperature to 2089 ranging from 1.3 to 1.9 °C for the GENMOM model to 2.2 to 3.5°C for the ECHAM5 model. Application of the GENMOM climate data to the deterministic stream temperature models produced fairly similar stream temperature changes for the three study sites. The empirical stream temperature study found stream temperature in the north shore region to be influenced by air temperature, catchment size, percentage of woody wetlands, latitude, and soil permeability rate. In response to climate change projected by the GENMOM GCM, the regional stream temperature model projects July mean water temperature to rapidly increase by approximately 1.2oC from 1990s to 2060s, followed by a slight decrease to 2089. The temperature increase was predicted to be the largest in the coastal area of middle north shore region. The brook trout presence/absence model found water temperature to have the strongest influence on trout presence. Brook trout were predicted to be at risk for water temperatures above 18.7oC and be extirpated from streams for temperatures over 20oC. Stream flow was shown to have a negative effect on trout presence, though not as strong as water temperature. Overall, these data predict that brook trout may be extirpated from lower shore area, be exposed to increasing risk in middle shore region, and remain present in upper shore streams from the present to 2089. This work would benefit greatly from a number of modifications to the GCM’s, the spatial data used in the development of both the deterministic and empirical models, and implementation of a more detailed, spatially explicit, hydrologic model. Finally, additional fish data, including cool and warm water assemblage data, along with descriptors of landscape structure (i.e., connectivity) would allow us to assess the areas where cold water species may be threatened by the presence or potential presence of coolwater competitors

    The Amateur Sky Survey Mark III Project

    Get PDF
    The Amateur Sky Survey (TASS) is a loose confederation of amateur and professional astronomers. We describe the design and construction of our Mark III system, a set of wide-field drift-scan CCD cameras which monitor the celestial equator down to thirteenth magnitude in several passbands. We explain the methods by which images are gathered, processed, and reduced into lists of stellar positions and magnitudes. Over the period October, 1996, to November, 1998, we compiled a large database of photometric measurements. One of our results is the "tenxcat" catalog, which contains measurements on the standard Johnson-Cousins system for 367,241 stars; it contains links to the light curves of these stars as well.Comment: 20 pages, including 4 figures; additional JPEG files for Figures 1, 2. Submitted to PAS

    Precise measurements help gauge Pacific Northwest\u27s Earthquake potential

    Get PDF
    Except for the recent rumblings of a few moderate earthquakes and the eruption of Mt. St. Helen\u27s, all has been relatively quiet on the Pacific Northwestern front. The Cascades region in the Pacific Northwest, a sporadically active earthquake and volcanic zone, still has great seismic potential [Atwater, 1987], as comparisons with other subduction zones around the world have shown [Heaton and Kanamori, 1984]. Recent tsunami propagation models [Satake, 1996] and tree ring studies suggest that the last great Cascadia earthquake occurred in the winter of 1700 A.D. and had a magnitude of −8.9. The North Cascades or Wenatchee earthquake followed in 1872. With an estimated magnitude greater than 7, it was the largest earthquake in the written history of Washington and Oregon

    GPS-determination of along-strike variation in Cascadia margin kinematics: Implications for relative plate motion, Subduction zone coupling, and permanent deformation

    Get PDF
    High‐precision GPS geodesy in the Pacific Northwest provides the first synoptic view of the along‐strike variation in Cascadia margin kinematics. These results constrain interfering deformation fields in a region where typical earthquake recurrence intervals are one or more orders of magnitude longer than the decades‐long history of seismic monitoring and where geologic studies are sparse. Interseismic strain accumulation contributes greatly to GPS station velocities along the coast. After correction for a simple elastic dislocation model, important residual motions remain, especially south of the international border. The magnitude of northward forearc motion increases southward from western Washington (3–7 mm/yr) to northern and central Oregon (∼9 mm/yr), consistent with oblique convergence and geologic constraints on permanent deformation. The margin‐parallel strain gradient, concentrated in western Washington across the populated Puget Lowlands, compares in magnitude to shortening across the Los Angeles Basin. Thus crustal faulting also contributes to seismic hazard. Farther south in southern Oregon, north‐westward velocities reflect the influence of Pacific‐North America motion and impingement of the Sierra Nevada block on the Pacific Northwest. In contrast to previous notions, some deformation related to the Eastern California shear zone crosses northernmost California in the vicinity of the Klamath Mountains and feeds out to the Gorda plate margin

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Measurement of the Top Quark Pair Production Cross Section in pbarp Collisions

    Get PDF
    We present a measurement of the ttbar production cross section in ppbar collisions at root(s) = 1.8TeV by the D0 experiment at the Fermilab Tevatron. The measurement is based on data from an integrated luminosity of approximately 125 pb^-1 accumulated during the 1992-1996 collider run. We observe 39 ttbar candidate events in the dilepton and lepton+jets decay channels with an expected background of 13.7+-2.2 events. For a top quark mass of 173.3GeV/c^2, we measure the ttbar production cross section to be 5.5+-1.8 pb.Comment: 11 pages with 3 encapsulated PostScript figures and 2 PostScript table included in the body of the articl
    corecore