165 research outputs found

    Pokroky v molekulární patologii diabetu

    Get PDF

    Rearing Thyridanthrax fenestratus (Diptera, Bombyliidae) on Pemphredon fabricii (Hymenoptera, Crabronidae) prepupae

    Get PDF
    Thyridanthrax fenestratus (Fallén, 1814) is a bombyliid with poorly understood biology. It was recently shown to locally but frequently parasitize Pemphredon fabricii (M. Müller, 1911) (Hymenoptera: Crabronidae), a crabronid wasp that abundantly nests in old Lipara-induced galls on the common reed Phragmites australis (Cav.) Trin. ex Steud., 1840. The parasitism modes in Bombyliidae and Thyridanthrax spp. are not uniform. Here, we report that Th. fenestratus switches facultatively between killing the host almost immediately (idiobiont strategy) and killing the host at a later developmental stage (koinobiont strategy). We document the koinobiont parasitoid strategy for a series of Th. fenestratus larvae parasitizing P. fabricii. We found that a significant portion of Th. fenestratus larvae spend winter as young larvae and start feeding on fully developed and defecated prepupae of P. fabricii only after the end of cold-induced winter diapause. The time needed for the development of Th. fenestratus larvae exceeds several times the time needed for pupation of P. fabricii prepupae; the parasitized prepupae, therefore, remain paralyzed until the parasitic larva completes feeding. Fungicides, which alter the pupation of the host larva, seem to have negligible effects on Th. fenestratus larvae. The ability to switch between the two parasitism strategies has already been reported for several Anthrax spp., though the ability to block the host in the defecated prepupa stage and prevent its pupation following cold-induced diapause is herein reported for the first time

    Metformin treatment for diabetes mellitus correlates with progression and survival in colorectal carcinoma

    Get PDF
    BACKGROUND: Diabetes mellitus is unfavorably associated with cancer risk. The purpose of this multi-disciplinary project was to evaluate a possible association of diabetes mellitus and other comorbidities and their treatment with progression of colorectal cancer. PATIENTS AND METHODS: We investigated the correlation between pathological characteristics and clinical course, including comorbidities in 1004 Czech patients diagnosed and surgically treated for colorectal adenocarcinoma (CRC) between 1999 and 2016. RESULTS: In our data set, CRC patients treated with metformin due to coexisting diabetes mellitus type 2 (T2DM) developed fewer distant metastases which clinically correlates with slower CRC progression. Survival in metformin subgroup was longer, particularly in men with CRC. Osteoporosis may be a negative factor of survival in CRC patients. CONCLUSIONS: Our findings also indicate that aging, higher tumor grade and TNM stage, coexistence of selected endocrine disorders, and metabolic abnormalities may change the tumor microenvironment and impact survival in colorectal cancer, although mechanism of these observations yet to be explained. Patients with diabetes mellitus type 2 treated with metformin may represent the altered microenvironment with specifically tuned metabolic molecular responses and with various epigenetic characteristics. More awareness and increased understanding of the mechanisms underlying the positive effect of metformin on patients' survival could offer insight into new treatment methods and permit more individualized treatment plans.Web of Science13239238

    Migrastatics—anti-Metastatic and Anti-invasion Drugs:Promises and Challenges

    Get PDF
    In solid cancers, invasion and metastasis account for more than 90% of mortality. However, in the current armory of anticancer therapies, a specific category of anti-invasion and antimetastatic drugs is missing. Here, we coin the term ‘migrastatics’ for drugs interfering with all modes of cancer cell invasion and metastasis, to distinguish this class from conventional cytostatic drugs, which are mainly directed against cell proliferation. We define actin polymerization and contractility as target mechanisms for migrastatics, and review candidate migrastatic drugs. Critical assessment of these antimetastatic agents is warranted, because they may define new options for the treatment of solid cancers

    Negative Regulation of Mast Cell Signaling and Function by the Adaptor LAB/NTAL

    Get PDF
    Engagement of the Fcɛ receptor I (FcɛRI) on mast cells and basophils initiates signaling pathways leading to degranulation. Early activation events include tyrosine phosphorylation of two transmembrane adaptor proteins, linker for activation of T cells (LAT) and non–T cell activation linker (NTAL; also called LAB; a product of Wbscr5 gene). Previous studies showed that the secretory response was partially inhibited in bone marrow–derived mast cells (BMMCs) from LAT-deficient mice. To clarify the role of NTAL in mast cell degranulation, we compared FcɛRI-mediated signaling events in BMMCs from NTAL-deficient and wild-type mice. Although NTAL is structurally similar to LAT, antigen-mediated degranulation responses were unexpectedly increased in NTAL-deficient mast cells. The earliest event affected was enhanced tyrosine phosphorylation of LAT in antigen-activated cells. This was accompanied by enhanced tyrosine phosphorylation and enzymatic activity of phospholipase C γ1 and phospholipase C γ2, resulting in elevated levels of inositol 1,4,5-trisphosphate and free intracellular Ca2+. NTAL-deficient BMMCs also exhibited an enhanced activity of phosphatidylinositol 3-OH kinase and Src homology 2 domain–containing protein tyrosine phosphatase-2. Although both LAT and NTAL are considered to be localized in membrane rafts, immunogold electron microscopy on isolated membrane sheets demonstrated their independent clustering. The combined data show that NTAL is functionally and topographically different from LAT

    Elevation gradient affects the distribution and host utilisation of Zatypota anomala (Hymenoptera, Ichneumonidae) associated with mesh web weaving spiders (Araneae, Dictynidae)

    Get PDF
    The spatial distribution of parasitoids is closely linked to the distribution and ecological requirements of their hosts. Several studies have documented changes in the fauna composition of parasitoids in response to elevation, but data on parasitoids associated with spiders are missing. The koinobiont ichneumonid wasp Zatypota anomala is strictly specialised on spiders of the genus Dictyna (Dictynidae) in Europe. We examined the distribution of spiders of the family Dictynidae in forest ecotones in central Europe across a broad elevation gradient (110–1466 m a.s.l.). We checked the spiders for parasitism by Z. anomala. It was most abundant at the mid-elevations (median 712 m a.s.l., range 179–870 m a.s.l.). We identified four dictynid spider species as Z. anomala hosts. These were Dictyna arundinacea, Dictyna uncinata, Nigma flavescens, and Nigma walckenaeri. All four species and the genus Nigma were recorded as hosts for the first time. The parasitoids strongly preferred juvenile instars of their hosts. The body length differed between parasitised Dictyna and Nigma spiders (medians: 1.95 mm and 2.55 mm, respectively). The distribution of Dictyna and Nigma spiders overlapped along the elevation gradient, but parasitism incidence significantly differed between spider genera along the elevation gradient. Nigma was parasitized at lower elevations between 179–254 m a.s.l. and Dictyna at higher elevations between 361–870 m a.s.l. The phenology of Z. anomala is closely tied to the univoltine life strategy of its host spiders. The parasitoid female oviposits in autumn, and its offspring overwinter as larvae on the host, reach adulthood during spring, and pass the summer as an adult

    Cancer prevention and therapy through the modulation of the tumor microenvironment

    Get PDF
    Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer

    The effect of environmental chemicals on the tumor microenvironment

    Get PDF
    Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
    corecore