63 research outputs found

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Implementation and Evaluation of Data Analysis Strategies for Time-Resolved Optical Spectroscopy

    No full text
    Time-resolved optical spectroscopy plays a key role in illuminating the mechanisms of many fundamental processes in physics, chemistry, and biology. However, to extract the essential information from the highly complex time-resolved data, advanced data analysis techniques are required. Here we present the implementation strategies and the evaluation of the familiar global lifetime and target analysis as well as the not so widely adopted lifetime distribution analysis (LDA). Furthermore, we demonstrate the implementation of analysis strategies dealing with a number of artifacts inherently present in data from ultrafast optical experiments. The focus of the work is placed on LDA as it allows invaluable exploration depth of the kinetic information contained in the experimental data. We establish a clear regularization procedure for the use of LDA in ultrafast optical spectroscopy and evaluate the performance of a number of factors that play a role in the reliable reconstruction of lifetime distributions. Our results show that the optimal regularization factor can be determined well with the L-curve and the generalized cross-validation techniques. Moreover, the performance evaluations indicate that the most efficient regularization norm is the identity matrix. The analytical procedures described in this work can be readily implemented and used for the analysis of any time-resolved data

    燒津鰹漁業に於ける船仲組織(上) - 本邦漁業に特異なる勞働組織の一例 -

    Get PDF
    We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at √sNN = 2.76 TeV as a function of collision centrality and the average transverse momentum of the pair kT. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged onedimensional radii are extracted. The radii decrease with kT, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with _dNch/dη_1/3. This behavior is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller √sNN, a decrease in the ratio Rout/Rside is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. The results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider

    Performance of the ALICE Experiment at the CERN LHC

    No full text
    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables

    Measurement of visible cross sections in proton-lead collisions at sqrt(sNN) = 5.02 TeV in van der Meer scans with the ALICE detector

    No full text
    In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair sqrt(sNN) = 5.02 TeV. Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage 4.6 < eta< 4.9, -3.3 < eta < -3.0 and 2.8 < eta < 5.1, -3.7 < eta < -1.7, respectively. Given the asymmetric detector acceptance, the cross section was measured separately for the two configurations. The measured visible cross sections are used to calculate the integrated luminosity of the proton-lead and lead-proton data samples, and to indirectly measure the cross section for a third, configuration-independent, reference process, based on neutron detection by the Zero Degree Calorimeters

    Production of inclusive ϒ(1S) and ϒ(2S) in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report on the production of inclusive Υ(1S) and Υ(2S) in p-Pb collisions at sNN−−−√=5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (−4.46<ycms<−2.96) and forward (2.03<ycms<3.53) rapidity down to zero transverse momentum. The production cross sections of the Υ(1S) and Υ(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of Υ(1S). A suppression of the inclusive Υ(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects

    Azimuthal anisotropy of D meson production in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV arXiv

    No full text
    The production of the prompt charmed mesons D0D^0, D+D^+ and D+D^{*+} relative to the reaction plane was measured in Pb-Pb collisions at a centre-of-mass energy per nucleon--nucleon collision of sNN\sqrt{s_{NN}} = 2.76 TeV with the ALICE detector at the LHC. D mesons were reconstructed via their hadronic decays at central rapidity in the transverse momentum (pTp_T) interval 2-16 Gev/c. The azimuthal anisotropy is quantified in terms of the second coefficient v2v_2 in a Fourier expansion of the D meson azimuthal distribution, and in terms of the nuclear modification factor RAAR_{AA}, measured in the direction of the reaction plane and orthogonal to it. The v2v_2 coefficient was measured with three different methods and in three centrality classes in the interval 0-50%. A positive v2v_2 is observed in mid-central collisions (30-50% centrality class), with an mean value of 0.2040.036+0.0990.204_{-0.036}^{+0.099}(tot.unc.) in the interval 2 The production of the prompt charmed mesons D0, D+, and D*+ relative to the reaction plane was measured in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collision of sNN=2.76TeV with the ALICE detector at the CERN Large Hadron Collider. D mesons were reconstructed via their hadronic decays at central rapidity in the transverse-momentum (pT) interval 2–16 GeV/c. The azimuthal anisotropy is quantified in terms of the second coefficient v2 in a Fourier expansion of the D-meson azimuthal distribution and in terms of the nuclear modification factor RAA, measured in the direction of the reaction plane and orthogonal to it. The v2 coefficient was measured with three different methods and in three centrality classes in the interval 0%–50%. A positive v2 is observed in midcentral collisions (30%–50% centrality class), with a mean value of 0.204−0.036+0.099 (tot. unc.) in the interval 2&lt;pT&lt;6GeV/c, which decreases towards more central collisions (10%–30% and 0%–10% classes). The positive v2 is also reflected in the nuclear modification factor, which shows a stronger suppression in the direction orthogonal to the reaction plane for midcentral collisions. The measurements are compared to theoretical calculations of charm-quark transport and energy loss in high-density strongly interacting matter at high temperature. The models that include substantial elastic interactions with an expanding medium provide a good description of the observed anisotropy. However, they are challenged to simultaneously describe the strong suppression of high-pT yield of D mesons in central collisions and their azimuthal anisotropy in noncentral collisions.</p

    J/ψJ/\psi production and nuclear effects in p-Pb collisions at SNN\sqrt{S_{NN}} = 5.02 TeV

    No full text
    Inclusive J/ψ\psi production has been studied with the ALICE detector in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV at the CERN LHC, in the rapidity domains 2.03 < ycms_{cms} < 3.53 and −4.46 < ycms_{cms} < −2.96, down to zero transverse momentum. The J/ψ\psi measurement is performed in the Muon Spectrometer through the μ+μ\mu^+\mu^− decay mode. In this Letter, the J/ψ\psi production cross section and the nuclear modification factor RpPb_{pPb} for the rapidities under study are presented. While at forward rapidity a suppression of the J/ψ\psi yield with respect to binary-scaled pp collisions is observed, in the backward region no suppression is present. The ratio of the forward and backward yields is also shown differentially in rapidity and transverse momentum. Theoretical predictions based on nuclear shadowing, as well as on models including, in addition, a contribution from partonic energy loss, are in fair agreement with the experimental results.Inclusive J/ψ\psi production has been studied with the ALICE detector in p-Pb collisions at the nucleon-nucleon center of mass energy sNN\sqrt{s_{\rm NN}} = 5.02 TeV at the CERN LHC. The measurement is performed in the center of mass rapidity domains 2.03<ycms<3.532.03<y_{\rm cms}<3.53 and 4.46<ycms<2.96-4.46<y_{\rm cms}<-2.96, down to zero transverse momentum, studying the μ+μ\mu^+\mu^- decay mode. In this paper, the J/ψ\psi production cross section and the nuclear modification factor RpPbR_{\rm pPb} for the rapidities under study are presented. While at forward rapidity, corresponding to the proton direction, a suppression of the J/ψ\psi yield with respect to binary-scaled pp collisions is observed, in the backward region no suppression is present. The ratio of the forward and backward yields is also measured differentially in rapidity and transverse momentum. Theoretical predictions based on nuclear shadowing, as well as on models including, in addition, a contribution from partonic energy loss, are in fair agreement with the experimental results
    corecore