73 research outputs found

    Seasonal dynamics of soil microbial growth, respiration, biomass, and carbon use efficiency in temperate soils

    Get PDF
    Soil microbial growth, respiration, and carbon (C) use efficiency (CUE) are essential parameters to understand, describe and model the soil carbon cycle. While seasonal dynamics of microbial respiration are well studied, little is known about how microbial growth and CUE change over the course of a year, especially outside the plant growing season. In this study, we measured soil microbial respiration, gross growth via 18O incorporation into DNA, and biomass in an agricultural field and a deciduous forest 16 times over the course of two years. We sampled soils to a depth of 5 cm from plots at which harvest residues or leaf litter remained on the plot or was removed. We observed strong seasonal variations of microbial respiration, growth, and biomass. All these microbial parameters were significantly higher at the forest site, which contained 4.3 % organic C compared to the agricultural site with 0.9 % organic C. CUE also varied strongly (0.1 to 0.7) but was overall significantly higher at the agricultural site compared to the forest site. We found that microbial respiration and to a lesser extent microbial growth followed the seasonal dynamics of soil temperature. Microbial growth was further affected by the presence of plants in the agricultural system or foliage in the forest. At low temperatures in winter, both microbial respiration and gross growth showed the lowest rates, whereas CUE (calculated from both respiration and growth) showed amongst the highest values determined during the two years, due to the higher temperature sensitivity of microbial respiration. Microbial biomass C strongly increased in winter. Surprisingly, this winter peak was not connected to high microbial growth or an increase in DNA content. This suggests that microorganisms accumulated C and N, potentially in the form of osmo- or cryoprotectants or increased in cell size but did not divide. This microbial winter bloom and following decline, where C is released from microbial biomass and freely available, might constitute a highly dynamic time in the annual C cycle in temperate soil systems. Highly variable CUE, which was observed in our study, and the fact that CUE is calculated from independently controlled microbial respiration and microbial growth, ask for great caution when CUE is used to describe soil microbial physiology, soil C dynamics or C sequestration. Instead, microbial respiration, microbial growth, and microbial biomass C should be investigated individually in combination to better understand the soil C cycle

    Meta-analysis protocol on the effects of cover crops on pool specific soil organic carbon

    Get PDF
    Soil organic carbon (SOC) plays an important role in agricultural soils, as it contributes to overall soil health as well as climate change mitigation and adaptation. By conducting a meta-analysis, we aim to quantitatively summarize research studying the effects of cover crops (CC) on SOC pools throughout soil depths in arable cropland. We included global studies located in the climatic zones present in Europe. The pools chosen for this analysis are the particulate organic carbon (POC) and the mineral associated organic carbon (MAOC) and the microbial biomass carbon (MBC). Alongside, we will study the effects of a broad range of moderators, such as pedo-climatic factors, other agricultural management practices and CC characteristics e.g., type. We identified 71 relevant studies from 61 articles, of which mean values for SOC pools, standard deviations and sample sizes for treatments (CC) and controls (no CC) were extracted. To perform the meta-analysis, an effect size will be calculated for each study, which will then be summarized across studies by using weighing procedure. Consequently, this meta-analysis will provide valuable information on the state of knowledge on SOC pool change influenced by CC, corresponding quantitative summary results and the sources of heterogeneity influencing these results. Graph

    A Field-Scale Decision Support System for Assessment and Management of Soil Functions

    Get PDF
    peer-reviewedAgricultural decision support systems (DSSs) are mostly focused on increasing the supply of individual soil functions such as, e.g., primary productivity or nutrient cycling, while neglecting other important soil functions, such as, e.g., water purification and regulation, climate regulation and carbon sequestration, soil biodiversity, and habitat provision. Making right management decisions for long-term sustainability is therefore challenging, and farmers and farm advisors would greatly benefit from an evidence-based DSS targeted for assessing and improving the supply of several soil functions simultaneously. To address this need, we designed the Soil Navigator DSS by applying a qualitative approach to multi-criteria decision modeling using Decision Expert (DEX) integrative methodology. Multi-criteria decision models for the five main soil functions were developed, calibrated, and validated using knowledge of involved domain experts and knowledge extracted from existing datasets by data mining. Subsequently, the five DEX models were integrated into a DSS to assess the soil functions simultaneously and to provide management advices for improving the performance of prioritized soil functions. To enable communication between the users and the DSS, we developed a user-friendly computer-based graphical user interface, which enables users to provide the required data regarding their field to the DSS and to get textual and graphical results about the performance of each of the five soil functions in a qualitative way. The final output from the DSS is a list of soil mitigation measures that the end-users could easily apply in the field in order to achieve the desired soil function performance. The Soil Navigator DSS has a great potential to complement the Farm Sustainability Tools for Nutrients included in the Common Agricultural Policy 2021–2027 proposal adopted by the European Commission. The Soil Navigator has also a potential to be spatially upgraded to assist decisions on which soil functions to prioritize in a specific region or member state. Furthermore, the Soil Navigator DSS could be used as an educational tool for farmers, farm advisors, and students, and its potential should be further exploited for the benefit of farmers and the society as a whole

    Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe

    Get PDF
    Conventional farming (CONV) is the norm in European farming, causing adverse effects on some of the five major soil functions, viz. primary productivity, carbon sequestration and regulation, nutrient cycling and provision, water regulation and purification, and habitat for functional and intrinsic biodiversity. Conservation agriculture (CA) is an alternative to enhance soil functions. However, there is no analysis of CA benefits on the five soil functions as most studies addressed individual soil functions. The objective was to compare effects of CA and CONV practices on the five soil functions in four major environmental zones (Atlantic North, Pannonian, Continental and Mediterranean North) in Europe by applying expert scoring based on synthesis of existing literature. In each environmental zone, a team of experts scored the five soil functions due to CA and CONV treatments and median scores indicated the overall effects on five soil functions. Across the environmental zones, CONV had overall negative effects on soil functions with a median score of 0.50 whereas CA had overall positive effects with median score ranging from 0.80 to 0.83. The study proposes the need for field-based investigations, policies and subsidy support to benefit from CA adoption to enhance the five soil functions.UniĂłn Europea 635201UniĂłn Europea 652615UniĂłn Europea 68927

    Development of an Agricultural Primary Productivity Decision Support Model: A Case Study in France

    Get PDF
    Agricultural soils provide society with several functions, one of which is primary productivity. This function is defined as the capacity of a soil to supply nutrients and water and to produce plant biomass for human use, providing food, feed, fiber, and fuel. For farmers, the productivity function delivers an economic basis and is a prerequisite for agricultural sustainability. Our study was designed to develop an agricultural primary productivity decision support model. To obtain a highly accurate decision support model that helps farmers and advisors to assess and manage the provision of the primary productivity soil function on their agricultural fields, we addressed the following specific objectives: (i) to construct a qualitative decision support model to assess the primary productivity soil function at the agricultural field level; (ii) to carry out verification, calibration, and sensitivity analysis of this model; and (iii) to validate the model based on empirical data. The result is a hierarchical qualitative model consisting of 25 input attributes describing soil properties, environmental conditions, cropping specifications, and management practices on each respective field. An extensive dataset from France containing data from 399 sites was used to calibrate and validate the model. The large amount of data enabled data mining to support model calibration. The accuracy of the decision support model prior to calibration supported by data mining was ~40%. The data mining approach improved the accuracy to 77%. The proposed methodology of combining decision modeling and data mining proved to be an important step forward. This iterative approach yielded an accurate, reliable, and useful decision support model for the assessment of the primary productivity soil function at the field level. This can assist farmers and advisors in selecting the most appropriate crop management practices. Embedding this decision support model in a set of complementary models for four adjacent soil functions, as endeavored in the H2020 LANDMARK project, will help take the integrated sustainability of arable cropping systems to a new level

    Harvesting European knowledge on soil functions and land management using multi-criteria decision analysis

    Get PDF
    Soil and its ecosystem functions play a societal role in securing sustainable food production while safeguarding natural resources. A functional land management framework has been proposed to optimize the agro-environmental outputs from the land and specifically the supply and demand of soil functions such as (a) primary productivity, (b) carbon sequestration, (c) water purification and regulation, (d) biodiversity and (e) nutrient cycling, for which soil knowledge is essential. From the outset, the LANDMARK multi-actor research project integrates harvested knowledge from local, national and European stakeholders to develop such guidelines, creating a sense of ownership, trust and reciprocity of the outcomes. About 470 stakeholders from five European countries participated in 32 structured workshops covering multiple land uses in six climatic zones. The harmonized results include stakeholders’ priorities and concerns, perceptions on soil quality and functions, implementation of tools, management techniques, indicators and monitoring, activities and policies, knowledge gaps and ideas. Multi-criteria decision analysis was used for data analysis. Two qualitative models were developed using Decision EXpert methodology to evaluate “knowledge” and “needs”. Soil quality perceptions differed across workshops, depending on the stakeholder level and regionally established terminologies. Stakeholders had good inherent knowledge about soil functioning, but several gaps were identified. In terms of critical requirements, stakeholders defined high technical, activity and policy needs in (a) financial incentives, (b) credible information on improving more sustainable management practices, (c) locally relevant advice, (d) farmers’ discussion groups, (e) training programmes, (f) funding for applied research and monitoring, and (g) strengthening soil science in education.</p

    Unbearability of suffering at the end of life: the development of a new measuring device, the SOS-V

    Get PDF
    AbstractBackgroundUnbearable suffering is an important issue in end-of-life decisions. However, there has been no systematic, prospective, patient-oriented research which has focused on unbearable suffering, nor is there a suitable measurement instrument. This article describes the methodological development of a quantitative instrument to measure the nature and intensity of unbearable suffering, practical aspects of its use in end-stage cancer patients in general practice, and studies content validity and psychometric properties.MethodsRecognizing the conceptual difference between unbearability of suffering and extent or intensity of suffering, we developed an instrument. The compilation of aspects considered to be of importance was based on a literature search. Psychometric properties were determined on results of the first interviews with 64 end-stage cancer patients that participated in a longitudinal study in the Netherlands.ResultsThe instrument measures five domains: medical signs and symptoms, loss of function, personal aspects, aspects of environment, and nature and prognosis of the disease. Sixty nine aspects were investigated, and an overall score was asked. In 64 end-stage cancer patients the instrument was used in total 153 times with an average interview time varying from 20-40 minutes. Cronbachs alpha's of the subscales were in majority above 0.7. The sum scores of (sub)scales were correlated strongly to overall measures on suffering.ConclusionThe SOS-V is an instrument for measuring the unbearability of suffering in end-stage cancer patients with good content validity and psychometric properties, which is feasible to be used in practice. This structured instrument makes it possible to identify and study unbearable suffering in a quantitative and patient-oriented way

    Policy mixes for sustainability transitions: an extended concept and framework for analysis

    Get PDF
    Reaching a better understanding of the policies and politics of transitions presents a main agenda item in the emerging field of sustainability transitions. One important requirement for these transitions, such as the move towards a decarbonized energy system, is the redirection and acceleration of technological change, for which policies play a key role. In this regard, several studies have argued for the need to combine different policy instruments in so-called policy mixes. However, existing policy mix studies often fall short of reflecting the complexity and dynamics of actual policy mixes, the underlying politics and the evaluation of their impacts. In this paper we take a first step towards an extended, interdisciplinary policy mix concept based on a review of the bodies of literature on innovation studies, environmental economics and policy analysis. The concept introduces a clear terminology and consists of the three building blocks elements, policy processes and characteristics, which can be delineated by several dimensions. Based on this, we discuss its application as analytical framework for empirical studies analyzing the impact of the policy mix on technological change. Throughout the paper we illustrate the proposed concept by using the example of the policy mix for fostering the transition of the German energy system to renewable power generation technologies. Finally, we derive policy implications and suggest avenues for future research

    Towards enhanced adoption of soil-improving management practices in Europe

    Get PDF
    17 páginas, 1 tabla, 4 figurasSustainable agricultural soil management practices are key to restore, maintain and improve soil health. The European Joint Programme for SOIL (EJP SOIL) has identified twelve main soil challenges in Europe. To assess the potential and eventually increase the adoption of soil-improving management practices, it is necessary to know (i) the current levels of adoption of the practices, (ii) socio-technical barriers influencing their adoption, and (iii) their bio-physical limits. This study compiled an inventory of soil-improving management practices relevant to European conditions, and used a survey among soil scientists to assess the levels of adoption of these practices in Europe. In total, 53 soil management practices were identified that address one or several of the soil challenges. The adoption of most practices was low or spatially heterogeneous across Europe, highlighting region-specific limitations to sustainable soil management. Qualitative interviews were conducted to explore the importance of socio-technical aspects of adoption. Using conservation agriculture as an example, factors that can hinder adoption included the availability of knowledge and adequate machinery, financial risks, and farming traditions. Through a modelling approach, 54% of arable land in Europe was found to be suitable for cover cropping, indicating that the adoption of soil management practices is frequently limited by climatic constraints. We propose a region-specific approach that recognizes the importance of identifying and overcoming socio-technical barriers, and by acknowledging bio-physical limits that may be expanded by innovation.This work was funded under the European Joint Program for SOIL (EJP SOIL), which has received funding from the European Union's Horizon 2020 research and innovation programme: Grant agreement No 862695.Open access funding provided by Agroscope.Peer reviewe
    • …
    corecore