125 research outputs found

    Colocalization of connexin 36 and corticotropin-releasing hormone in the mouse brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gap junction proteins, connexins, are expressed in most endocrine and exocrine glands in the body and are at least in some glands crucial for the hormonal secretion. To what extent connexins are expressed in neurons releasing hormones or neuropeptides from or within the central nervous system is, however, unknown. Previous studies provide indirect evidence for gap junction coupling between subsets of neuropeptide-containing neurons in the paraventricular nucleus (PVN) of the hypothalamus. Here we employ double labeling and retrograde tracing methods to investigate to what extent neuroendocrine and neuropeptide-containing neurons of the hypothalamus and brainstem express the neuronal gap junction protein connexin 36.</p> <p>Results</p> <p>Western blot analysis showed that connexin 36 is expressed in the PVN. In bacterial artificial chromosome transgenic mice, which specifically express the reporter gene Enhanced Green Fluorescent Protein (EGFP) under the control of the connexin 36 gene promoter, EGFP expression was detected in magnocellular (neuroendocrine) and in parvocellular neurons of the PVN. Although no EGFP/connexin36 expression was seen in neurons containing oxytocin or vasopressin, EGFP/connexin36 was found in subsets of PVN neurons containing corticotropin-releasing hormone (CRH), and in somatostatin neurons located along the third ventricle. Moreover, CRH neurons in brainstem areas, including the lateral parabrachial nucleus, also expressed EGFP/connexin 36.</p> <p>Conclusion</p> <p>Our data indicate that connexin 36 is expressed in subsets of neuroendocrine and CRH neurons in specific nuclei of the hypothalamus and brainstem.</p

    Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes

    Get PDF
    ATP represents a major gliotransmitter that serves as a signaling molecule for the cross talk between glial and neuronal cells. ATP has been shown to be released by astrocytes in response to a number of stimuli under nonischemic conditions. In this study, using a luciferin-luciferase assay, we found that mouse astrocytes in primary culture also exhibit massive release of ATP in response to ischemic stress mimicked by oxygen-glucose deprivation (OGD). Using a biosensor technique, the local ATP concentration at the surface of single astrocytes was found to increase to around 4 μM. The OGD-induced ATP release was inhibited by Gd3+ and arachidonic acid but not by blockers of volume-sensitive outwardly rectifying Cl− channels, cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance-related protein (MRP), connexin or pannexin hemichannels, P2X7 receptors, and exocytotic vesicular transport. In cell-attached patches on single astrocytes, OGD caused activation of maxi-anion channels that were sensitive to Gd3+ and arachidonic acid. The channel was found to be permeable to ATP4− with a permeability ratio of PATP/PCl = 0.11. Thus, it is concluded that ischemic stress induces ATP release from astrocytes and that the maxi-anion channel may serve as a major ATP-releasing pathway under ischemic conditions

    Pregnancy and Maternal Behavior Induce Changes in Glia, Glutamate and Its Metabolism within the Cingulate Cortex

    Get PDF
    An upregulation of the astrocytic proteins GFAP and bFGF within area 2 of the cingulate cortex (Cg2) occurs within 3 hours of parturition in rats. These changes are the result of an interaction between hormonal state and maternal experience and are associated with increased dendritic spine density in this area. Here, we examined whether this upregulation of astrocytic proteins generalized to other glial markers and, in particular those associated with glutamate metabolism. We chose glial markers commonly used to reflect different aspects of glial function: vimentin, like GFAP, is a marker of intermediate filaments; glutamine synthetase (GS), and S-100beta, are used as markers for mature astrocytes and GS has also been used as a specific marker for glutamatergic enzymatic activity. In addition, we examined levels of proteins associated with glutamine synthetase, glutamate, glutamine and two excitatory amino acid transporters found in astrocytes, glt-1 and glast. S100beta immunoreactivity did not vary with reproductive state in either Cg2 or MPOA suggesting no change in the number of mature astrocytes across these conditions. Vimentin-ir did not differ across groups in Cg2, but expression of this protein decreased from Day 1 postpartum onwards in the MPOA. By contrast, GS-ir was increased within 24 h postpartum in Cg2 but not MPOA and similarly to GFAP and bFGF this upregulation of GS resulted from an interaction between hormonal state and maternal experience. Within Cg2, upregulation of GS was not accompanied by changes in the astrocytic glutamatergic transporters, glt-1 and glast, however, an increase in both glutamate and glutamine proteins were observed within the Cg2 of postpartum animals. Together, these changes suggest postpartum upregulation of glutamatergic activity and metabolism within Cg2 that is stimulated by pregnancy hormones and maternal experience

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    The C:N:P:S stoichiometry of soil organic matter

    Get PDF
    The formation and turnover of soil organic matter (SOM) includes the biogeochemical processing of the macronutrient elements nitrogen (N), phosphorus (P) and sulphur (S), which alters their stoichiometric relationships to carbon (C) and to each other. We sought patterns among soil organic C, N, P and S in data for c. 2000 globally distributed soil samples, covering all soil horizons. For non-peat soils, strong negative correlations (p < 0.001) were found between N:C, P:C and S:C ratios and % organic carbon (OC), showing that SOM of soils with low OC concentrations (high in mineral matter) is rich in N, P and S. The results can be described approximately with a simple mixing model in which nutrient-poor SOM (NPSOM) has N:C, P:C and S:C ratios of 0.039, 0.0011 and 0.0054, while nutrient-rich SOM (NRSOM) has corresponding ratios of 0.12, 0.016 and 0.016, so that P is especially enriched in NRSOM compared to NPSOM. The trends hold across a range of ecosystems, for topsoils, including O horizons, and subsoils, and across different soil classes. The major exception is that tropical soils tend to have low P:C ratios especially at low N:C. We suggest that NRSOM comprises compounds selected by their strong adsorption to mineral matter. The stoichiometric patterns established here offer a new quantitative framework for SOM classification and characterisation, and provide important constraints to dynamic soil and ecosystem models of carbon turnover and nutrient dynamics

    The “conscious pilot”—dendritic synchrony moves through the brain to mediate consciousness

    Get PDF
    Cognitive brain functions including sensory processing and control of behavior are understood as “neurocomputation” in axonal–dendritic synaptic networks of “integrate-and-fire” neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic–dendritic gap junctions, forming transient syncytia (“dendritic webs”) in input/integration layers oriented sideways to axonal–dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The “conscious pilot” is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation

    Whole transcriptome organisation in the dehydrated supraoptic nucleus

    Full text link
    The supraoptic nucleus (SON) is part of the central osmotic circuitry that synthesises the hormone vasopressin (Avp) and transports it to terminals in the posterior lobe of the pituitary. Following osmotic stress such as dehydration, this tissue undergoes morphological, electrical and transcriptional changes to facilitate the appropriate regulation and release of Avp into the circulation where it conserves water at the level of the kidney. Here, the organisation of the whole transcriptome following dehydration is modelled to fit Zipf's law, a natural power law that holds true for all natural languages, that states if the frequency of word usage is plotted against its rank, then the log linear regression of this is -1. We have applied this model to our previously published euhydrated and dehydrated SON data to observe this trend and how it changes following dehydration. In accordance with other studies, our whole transcriptome data fit well with this model in the euhydrated SON microarrays, but interestingly, fit better in the dehydrated arrays. This trend was observed in a subset of differentially regulated genes and also following network reconstruction using a third-party database that mines public data. We make use of language as a metaphor that helps us philosophise about the role of the whole transcriptome in providing a suitable environment for the delivery of Avp following a survival threat like dehydration

    Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe
    • …
    corecore