426 research outputs found

    Localisation and mass generation for non-Abelian gauge fields

    Get PDF
    It has been suggested recently that in the presence of suitably "warped" extra dimensions, the low-energy limit of pure gauge field theory may contain massive elementary vector bosons localised on a "brane", but no elementary Higgs scalars. We provide non-perturbative evidence in favour of this conjecture through numerical lattice measurements of the static quark-antiquark force of pure SU(2) gauge theory in three dimensions, of which one is warped. We consider also warpings leading to massless localised vector bosons, and again find evidence supporting the perturbative prediction, even though the gauge coupling diverges far from the brane in this case.Comment: 27 pages; small clarifications adde

    Transient domain walls and lepton asymmetry in the Left-Right symmetric model

    Full text link
    It is shown that the dynamics of domain walls in Left-Right symmetric models, separating respective regions of unbroken SU(2)_L and SU(2)_R in the early universe, can give rise to baryogenesis via leptogenesis. Neutrinos have a spatially varying complex mass matrix due to CP-violating scalar condensates in the domain wall. The motion of the wall through the plasma generates a flux of lepton number across the wall which is converted to a lepton asymmetry by helicity-flipping scatterings. Subsequent processing of the lepton excess by sphalerons results in the observed baryon asymmetry, for a range of parameters in Left-Right symmetric models.Comment: v2 version accepted for publication in Phys. Rev. D. Discussion in Introduction and Conclusion sharpened. Equation (12) corrected. 16 pages, 3 figure files, RevTeX4 styl

    Baryon number violation, baryogenesis and defects with extra dimensions

    Full text link
    In generic models for grand unified theories(GUT), various types of baryon number violating processes are expected when quarks and leptons propagate in the background of GUT strings. On the other hand, in models with large extra dimensions, the baryon number violation in the background of a string is not trivial because it must depend on the mechanism of the proton stabilization. In this paper we argue that cosmic strings in models with extra dimensions can enhance the baryon number violation to a phenomenologically interesting level, if the proton decay is suppressed by the mechanism of localized wavefunctions. We also make some comments on baryogenesis mediated by cosmological defects. We show at least two scenarios will be successful in this direction. One is the scenario of leptogenesis where the required lepton number conversion is mediated by cosmic strings, and the other is the baryogenesis from the decaying cosmological domain wall. Both scenarios are new and have not been discussed in the past.Comment: 20pages, latex2e, comments and references added, to appear in PR

    Occurrence and correction of copper deficiency of sheep in north-Western Queensland

    Get PDF
    The occurrence and correction of copper deficiency in Merino sheep on an affected property in north-western Queensland were studied in three trials in successive years. The effects of copper supplementation on growth of weaner sheep, wool production, wool quality and reproductive performance were examined. From these studies recommended treatments to prevent copper deficiency in sheep in this locality are (a) establish a good initial liver copper concentration by three treatments at fortnightly or monthly intervals and then maintain these reserves by 3-monthly treatments; and (b) treat lambs at marking and thereafter at about 3-monthly intervals

    Complex structure moduli stability in toroidal compactifications

    Get PDF
    In this paper we present a classification of possible dynamics of closed string moduli within specific toroidal compactifications of Type II string theories due to the NS-NS tadpole terms in the reduced action. They appear as potential terms for the moduli when supersymmetry is broken due to the presence of D-branes. We particularise to specific constructions with two, four and six-dimensional tori, and study the stabilisation of the complex structure moduli at the disk level. We find that, depending on the cycle on the compact space where the brane is wrapped, there are three possible cases: i) there is a solution inside the complex structure moduli space, and the configuration is stable at the critical point, ii) the moduli fields are driven towards the boundary of the moduli space, iii) there is no stable solution at the minimum of the potential and the system decays into a set of branes.Comment: 24 pages, JHEP3.cls, 19 figures. A few references adde

    Decay of Unstable D-branes with Electric Field

    Get PDF
    Using the techniques of two dimensional conformal field theory we construct time dependent classical solutions in open string theory describing the decay of an unstable D-brane in the presence of background electric field, and explicitly evaluate the time dependence of the energy momentum tensor and the fundamental string charge density associated with this solution. The final decay product can be interpreted as a combination of stretched fundamental strings and tachyon matter.Comment: 35 pages, LaTe

    Leptogenesis through direct inflaton decay to light particles

    Full text link
    We present a scenario of nonthermal leptogenesis following supersymmetric hybrid inflation, in the case where inflaton decay to both heavy right handed neutrino and SU(2)_L triplet superfields is kinematically disallowed. Lepton asymmetry is generated through the decay of the inflaton into light particles by the interference of one-loop diagrams with right handed neutrino and SU(2)_L triplet exchange respectively. We require superpotential couplings explicitly violating a U(1) R-symmetry and R-parity. However, the broken R-parity need not have currently observable low-energy signatures. Also, the lightest sparticle can be stable. Some R-parity violating slepton decays may, though, be detectable in the future colliders. We take into account the constraints from neutrino masses and mixing and the preservation of the primordial lepton asymmetry.Comment: 11 pages including 3 figures, uses Revtex, minor corrections, references adde

    Thermal leptogenesis in a model with mass varying neutrinos

    Full text link
    In this paper we consider the possibility of neutrino mass varying during the evolution of the Universe and study its implications on leptogenesis. Specifically, we take the minimal seesaw model of neutrino masses and introduce a coupling between the right-handed neutrinos and the dark energy scalar field, the Quintessence. In our model, the right-handed neutrino masses change as the Quintessence scalar evolves. We then examine in detail the parameter space of this model allowed by the observed baryon number asymmetry. Our results show that it is possible to lower the reheating temperature in this scenario in comparison with the case that the neutrino masses are unchanged, which helps solve the gravitino problem. Furthermore, a degenerate neutrino mass patten with mim_i larger than the upper limit given in the minimal leptogenesis scenario is permitted.Comment: 18 pages, 7 figures, version to appear in PR

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear transparency from quasielastic A(e,e'p) reactions uo to Q^2=8.1 (GeV/c)^2

    Get PDF
    The quasielastic (e,e^\primep) reaction was studied on targets of deuterium, carbon, and iron up to a value of momentum transfer Q2Q^2 of 8.1 (GeV/c)2^2. A nuclear transparency was determined by comparing the data to calculations in the Plane-Wave Impulse Approximation. The dependence of the nuclear transparency on Q2Q^2 and the mass number AA was investigated in a search for the onset of the Color Transparency phenomenon. We find no evidence for the onset of Color Transparency within our range of Q2Q^2. A fit to the world's nuclear transparency data reflects the energy dependence of the free proton-nucleon cross section.Comment: 11 pages, 6 figure
    corecore