
J
H
E
P
0
1
(
2
0
0
3
)
0
6
8

Published by Institute of Physics Publishing for SISSA/ISAS

Received: November 14, 2002

Revised: January 24, 2003

Accepted: January 30, 2003

Localisation and mass generation for non-abelian

gauge fields

Mikko Laine

Theory Division, CERN

CH-1211 Geneva 23, Switzerland

E-mail: mikko.laine@cern.ch

Harvey B. Meyer

Theoretical Physics, University of Oxford

1 Keble Road, Oxford, OX1 3NP, UK

E-mail: meyer@thphys.ox.ac.uk

Kari Rummukainen

Department of Physics

P.O.Box 64, FIN-00014 University of Helsinki, Finland, and

NORDITA

Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

E-mail: kari@nordita.dk

Mikhail Shaposhnikov

Institute of Theoretical Physics, University of Lausanne

BSP-Dorigny, CH-1015 Lausanne, Switzerland

E-mail: mikhail.shaposhnikov@ipt.unil.ch

Abstract: It has been suggested recently that in the presence of suitably “warped” extra

dimensions, the low-energy limit of pure gauge field theory may contain massive elementary

vector bosons localised on a “brane”, but no elementary Higgs scalars. We provide non-

perturbative evidence in favour of this conjecture through numerical lattice measurements

of the static quark-antiquark force of pure SU(2) gauge theory in three dimensions, of which

one is warped. We consider also warpings leading to massless localised vector bosons, and

again find evidence supporting the perturbative prediction, even though the gauge coupling

diverges far from the brane in this case.

Keywords: Extra Large Dimensions, Spontaneous Symmetry Breaking, Confinement,

Lattice Gauge Field Theories.

c© SISSA/ISAS 2003 http://jhep.sissa.it/archive/papers/jhep012003068/jhep012003068.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25361982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mikko.laine@cern.ch
mailto:meyer@thphys.ox.ac.uk
mailto:kari@nordita.dk
mailto:mikhail.shaposhnikov@ipt.unil.ch
http://jhep.sissa.it/stdsearch?keywords=Extra_Large_Dimensions+Spontaneous_Symmetry_Breaking+Confinement+Lattice_Gauge_Field_Theories
http://jhep.sissa.it/stdsearch?keywords=Extra_Large_Dimensions+Spontaneous_Symmetry_Breaking+Confinement+Lattice_Gauge_Field_Theories


J
H
E
P
0
1
(
2
0
0
3
)
0
6
8

Contents

1. Introduction 1

2. The mechanism in review 2

3. Static force in the continuum 4

4. Static force on the lattice 6

5. Numerical results 8

5.1 Gaussian weight function 8

5.2 Sharp weight function 10

5.3 Smooth weight function 12

6. Conclusions 13

A. Energy spectra for various weight functions 14

A.1 Gaussian weight function 14

A.2 “Sharp” weight function 15

A.3 “Smooth” weight function 19

B. Gauge invariant correlators in the abelian case 20

C. The SU(Nc) string tension in 2d 21

1. Introduction

In standard Kaluza-Klein dimensional reduction of pure gauge theory, the original (say,

five-dimensional) theory has an effective description in terms of a four-dimensional theory,

whose lightest degrees of freedom are in the Coulomb or confinement phase (depending

on the group), and have a wave function spread out evenly in the fifth dimension. It has

recently been demonstrated [1] that if the fifth dimension is suitably “warped”, this pattern

could change qualitatively, at least in the abelian case: the low-energy dynamics can still

be four-dimensional, but now with massive elementary vector bosons, and with a localised

wave function along the extra dimension. Thus, extra dimensions could potentially provide

an alternative for the Higgs mechanism.

While there is no doubt about the viability of this mechanism in the abelian case,

where all computations can be carried out analytically, things are more complicated in a

non-abelian theory. For a specific choice of the warp factor the low-energy effective action
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looks much like a four-dimensional gauge theory, but with a gauge non-invariant mass term.

For an abelian case, this is still a renormalisable theory, whereas for non-abelian groups it

is in general not (see, e.g., ref. [2]). This means that the heavier modes cannot decouple

from the low-energy dynamics. The hope is that they might nevertheless only introduce

small contributions, like higher order operators do in chiral perturbation theory, but this

has so far not been demonstrated explicitly.

Another way to express the problem is that a gauge theory with a mass term “intro-

duced by hand” may be considered the infinite Higgs-mass limit of a gauge-Higgs theory

with spontaneous symmetry breaking [2]–[4], and is therefore strongly coupled, at energies

of the order of the vector boson mass. Therefore the viability of perturbation theory must

again be checked by non-perturbative means.

There are also other types of warp factors, discussed in connection with the localisa-

tion of gravity [5] and gauge fields on a brane, which lead again to a lower dimensional

effective theory, but this time with massless vector bosons (see, e.g., [6]–[16]). This re-

quires asymptotically small warp factors (or, in other terms, large gauge couplings) far

from the brane [1]. As in the previous case, the validity of perturbation theory is then

in question. Some aspects related to this mechanism were already studied with numerical

methods in [17].

The purpose of the present paper is to study the issue of strong coupling with lattice

Monte Carlo simulations. To simplify the analysis, we would like to separate the problem of

non-renormalisability of the higher dimensional original gauge theory from the problem of a

large coupling constant far from a brane. To this end one can study a compactification from

four dimensions (4d) to three dimensions (3d), or even three dimensions to two dimensions

(2d). For the practical reasons that less computer time is required, and some exact results

are available in 2d physics, we choose here the latter case. Nevertheless, we should expect

the main features to carry over to higher dimensions, as well.

The outline of the paper is the following. We review some basic aspects of the mech-

anism in section 2. We introduce our observables and determine their behaviour in the

abelian case in section 3. The lattice formulation is presented in section 4, and numerical

results for the abelian and non-abelian cases, in section 5. We conclude in section 6. Some

technical details are discussed in the appendices.

2. The mechanism in review

We start by reviewing the basic properties of the mechanism introduced in [1], in the

abelian case. The euclidean continuum action is

S
(d+1)
E =

∫

ddx

∫

dz∆(z)
1

4
Fµ̃ν̃Fµ̃ν̃ , (2.1)

where Fµ̃ν̃ = ∂µ̃Aν̃−∂ν̃Aµ̃, and µ̃ = 1, . . . , d+1, z ≡ xd+1. An index without a tilde runs as

µ = 1, . . . , d. The function ∆(z) > 0 breaks the (d+1)-dimensional Lorentz invariance. We

however assume the special breaking pattern that terms containing Fµν , Fµz are multiplied

by the same function. We also take ∆(z) to be an even function of z, and refer sometimes

to the plane z = 0 as the “brane”.
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We choose units such that eq. (2.1) should roughly correspond to an effective d-

dimensional action of the form

S
(d+1)
E ∼

∫

ddx
1

4g2
FµνFµν + · · · , (2.2)

where g is the gauge coupling (which of course plays no dynamical role in the non-

interacting abelian case). Thus,

[Aµ] = GeV , [Fµν ] = GeV2 , [g2] = GeV4−d ,

[
∫

z
∆(z)

]

=

[

1

g2

]

. (2.3)

To proceed, we assume that one can make the gauge choice Az = 0, without introducing

any singularities. It should be noted, however, that this may not always be the case in

a strict sense, in a non-abelian theory. If for instance the extent of the z-direction and
∫

z∆(z) are finite, like at finite temperatures, then Az behaves effectively like a dynamical

adjoint-charged scalar field related to the global symmetries of the system, which can even

get spontaneously broken [18, 19, 20] (for a recent study in the context of extra dimensions,

see [21]). For the purposes of this Section, though, this possibility can be ignored. It should

perhaps be stressed that all the observables to be introduced later on, as well as the main

lattice simulations carried out, are explicitly gauge invariant, so that our conclusions are

by construction based on data which is independent of the gauge choice.

We now carry out a mode decomposition of the functional dependence of the fields on

the z-coordinate,

Aµ(x, z) =
∑

n

Anµ(x)ψn(z) . (2.4)

Units are chosen such that

[ψn] = [g] = GeV(4−d)/2. (2.5)

The real functions ψn(z) are assumed to satisfy the second order Sturm-Liouville linear

differential equation,

− 1

∆(z)

[

∆(z)ψ′n(z)
]′

= m2
nψn(z) . (2.6)

Here m2
n are real, because the differential operator is Hermitean. They turn out also to be

non-negative. We denote the mode constant in z (whether normalisable or not in infinite

volume) by the index n ≡ c, while general normalisable states with non-negative masses

are labeled by n ≥ 0, with even (odd) indices denoting states symmetric (anti-symmetric)

in z → −z. Explicit solutions of eq. (2.6) for various ∆(z) are discussed in appendix A.

Note that if the constant mode is normalisable in infinite volume, then the indices n = 0

and c refer to one and the same mode.

Together with the normalisation condition
∫

z
∆(z)ψm(z)ψn(z) ≡ δmn , (2.7)

eq. (2.6) guarantees that
∫

z
∆(z)ψ′m(z)ψ

′
n(z) = m2

nδmn . (2.8)
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Note also that the completeness relation can be written as
∑

n

ψn(z)ψn(z
′) = ∆−1(z)δ(z − z′) . (2.9)

The quadratic part of the action then becomes

S
(d+1)
E =

∫

ddx
∑

n≥0

(

1

4
F nµνF

n
µν +

1

2
m2
nA

n
µA

n
µ

)

. (2.10)

If the lowest mass is zero or much smaller than the masses of higher modes, we have an

effective d-dimensional field theory at low energies: it is described by the term with n = 0

(or n = c) in eq. (2.10).

Now, if the extent of the z-direction is finite and ∆(z) is regular, or if
∫ ∞

−∞
dz∆(z) <∞ , (2.11)

then eq. (2.6) clearly has a normalisable zero mode solution, with ψ0(z) = ψc constant and

m2
0 = m2

c = 0. The normalised form of this solution is

ψc =
1

√

∫

z∆(z)
. (2.12)

Then the low-energy effective theory is simply a standard pure gauge theory. The condition

eq. (2.11) implies that limz→∞∆(z) = 0 and, therefore, that the effective d+1 dimensional

gauge coupling ∆−1(z) is large far from the brane. In the non-abelian case this fact may,

in principle, invalidate the perturbative arguments just presented, and thus provides a

motivation for a lattice study.

If the condition in eq. (2.11) is not satisfied, then the constant mode ψc effectively

decouples (since ψc → 0); m0 6= 0; and we have massive vector bosons without any scalar

particles. Furthermore, a mass hierarchy m2
0 ¿ m2

1 can be achieved with some choices

of warp factors (see appendix A and ref. [1]), provided that ∆(0)/∆(z0) À 1, where z0
is a point where ∆(z) reaches its minimum value. Thus, a large mass ratio again only

appears if the effective higher-dimensional gauge coupling ∆−1(z) is large, but now at a

finite distance z0 from the brane.

Another subtle point with the case m0 6= 0 is that the low energy action is seemingly

not gauge invariant (see [1] for a discussion of gauge transformations). In the abelian

case the theory is nevertheless renormalisable, even if some interactions were added (see,

e.g., [22]). This is no longer true for non-abelian theories, and the question appears whether

the higher lying modes decouple or not.

3. Static force in the continuum

In order to distinguish the two different regimes (with and without the massless vector

mode ψc) we shall employ the standard order parameter for confinement, the static force

between two heavy test charges in the fundamental representation. We measure the force at

a fixed z; for actual mechanisms for the localisation of scalars and fermions in the vicinity

of z = 0 see, e.g., [14] and references therein.
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For now, we shall restrict to d = 2, the case we have actually studied with lattice

simulations. We consider a rectangular area with (∆x1,∆x2) ≡ (r, t), and define a Wilson

loop around the rectangle,

W (r, t; z) =
〈

ReTrP exp(i

∮

Aµ(x, z) dxµ)
〉

=
〈

ReTrP exp(i
∑

n

ψn(z)

∮

Anµ(x) dxµ)
〉

. (3.1)

The static potential can then be obtained as usual,

V (r; z) = − lim
t→∞

1

t
lnW (r, t; z) . (3.2)

A lowest order computation gives

V (r; z) = −
∑

n

ψ2n(z)

∫

dp

2π

eipr − 1

p2 +m2
n

=
∑

n

ψ2n(z)

2mn

(

1− e−mnr
)

. (3.3)

The static potential, itself, is of course not a physical observable. Depending on the

spectrum mn, its absolute value can be ultraviolet divergent, and in any case sensitive to

ultraviolet physics. Therefore we rather address its derivative, the force F (r; z),

F (r; z) ≡ ∂V (r; z)

∂r
. (3.4)

According to eq. (3.3),

F (r; z) =
∑

n

1

2
ψ2n(z)e

−mnr . (3.5)

We note from eq. (3.5) that an external source couples to the mode n via gextn ≡ ψn(z).
The signatures expected from F (r; z) can thus be summarised as follows. In the case

that the zero mode exists, m0 = mc = 0, the force should approach a constant at large r,

F (r; z)→ 1

2
ψ2c , (3.6)

because massive modes give contributions screened at distances r& 1/mn. On the other

hand, in the case of interest to us where m0 6= 0, m0 ¿ m1, and the zero mode decouples

(ψc → 0), we expect

F (r; z) ≈ 1

2
ψ20(z) e

−m0r . (3.7)

It is thus our objective to show that the force does get screened, but only on large distances,

as determined by 1/m0.

While we focus on the force in this paper, a behaviour qualitatively very similar can,

particularly in the abelian case, be obtained from various correlators of local gauge invariant

operators. For completeness, we discuss one example in appendix B.

So far we have discussed the potential in the abelian theory. In the non-abelian case,

the self- and cross-interactions between modes make obviously a fully analytic computation

impossible. However, if dimensional reduction indeed takes place then, as discussed in
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appendix C, the only change in the long-distance force is a colour factor, the quadratic

Casimir of the fundamental representation, CA = (N2
c − 1)/(2Nc):

F (r; z)→ CAF (r; z) . (3.8)

This simple relation, which allows us to directly compare the asymptotic non-abelian force

with the abelian one, is obviously specific to 2d physics.

In the non-abelian case, it is useful to also define couplings characterising the cubic

and quartic self-interactions of the fundamental mode. Let us introduce

g3 ≡
∫

z
∆(z)ψ30(z) , g24 ≡

∫

z
∆(z)ψ40(z) , (3.9)

and construct the dimensionless quantities

α3 ≡
g3
gext0

, α4 ≡
g24

[gext0 ]2
. (3.10)

In order for the low-energy effective theory to be “close” to a gauge theory, these numbers

had better be close to unity. In particular, if the zero mode is normalisable and therefore

ψ0 = ψc, we have exactly α3 = α4 = 1. In the opposite case of m0 6= 0, we have α3 6= 1

and α4 6= 1. Thus, the breaking of gauge invariance in the low-energy sector manifests

itself both through an effective mass term in eq. (2.10), and through non-universal self-

interactions which differ from the coupling of the modes to external sources.

4. Static force on the lattice

As mentioned above, in the non-abelian case the heavier modes cannot decouple, because

they are needed to guarantee renormalisability. It is therefore not obvious how well the

analytical estimates presented in section 3 really hold. We will hence study that system

with simple numerical lattice Monte Carlo simulations.

In fact, to account properly for finite size and finite lattice spacing effects, we will

carry out small scale simulations for the abelian system, as well. Thus, we can directly

compare the two sets of data, with similar volumes and lattice spacings. This may be useful

because the “sharp” and “smooth” weight functions to be introduced contain a small scale

hierarchy, which tends to lead either to finite size or finite lattice spacing effects in lattice

simulations. Still, both sets of results turn out in most cases to remain close to the analytic

continuum estimates.

In the abelian case, we discretise the action in eq. (2.1) by using the so-called non-

compact formulation:

S
(d+1)
E =

∑

z

βG(z)
∑

x

∑

µ̃<ν̃

1

2
α2µ̃ν̃ , (4.1)

where αµ̃ν̃(x) = αµ̃(x) + αν̃(x + ˆ̃µ) − αµ̃(x + ˆ̃ν) − αν̃(x), αµ̃(x) = aAµ̃(x), and a is the

lattice spacing. For future reference, we also define the link matrix, Uµ̃(x) ≡ exp[iαµ̃(x)].

The dimensionless coupling constant appearing in eq. (4.1) is taken to be

βG(z) =
∆(z)

a
. (4.2)
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In the non-abelian case, we employ the standard Wilson action,

S
(d+1)
E =

∑

z

βG(z)
∑

x

∑

µ̃<ν̃

(

1− 1

Nc
ReTrPµ̃ν̃

)

, (4.3)

where the naive continuum limit implies

βG(z) =
2Nc∆(z)

a
. (4.4)

Rather than βG(z), we will often equivalently refer to ∆0/a to fix the lattice spacing, where

∆0 ≡ ∆(z = 0). Note that we can view a as being constant throughout the lattice: in our

case a non-constant βG(z) does not imply varying lattice spacing.

It should be noted that, as we have discussed in appendix A, the value of ∆0 does not

affect at all the spectrum obtained in the non-interacting limit. For a weak coupling, the

criteria for discretisation and finite volume effects to be small are simply

a¿ 1

m0
¿ L , T , (4.5)

where L, T are the linear extents of the system in the r and t directions, respectively.

On the lattice, however, ∆0 determines the strength of interactions. In general, lattice

discretisation effects are larger and the gauge theory more strongly coupled where βG(z)

is smaller, if am0 is kept fixed. We return to this issue presently.

It is useful to note that if we think in terms of the mode decomposed action in eq. (2.10),

then the mode n can effectively can be assigned a 2d action at any fixed z, with

β
(eff,n)
G (z) ≡ 2Nc

a2[gextn ]2
=

2Nc

a2ψ2n(z)
. (4.6)

Parameterising the dimensionless 2d link matrix Uµ as

U (n)
µ (x; z) = eiaψn(z)T

bAbµ(x) , (4.7)

where T b are the Hermitean generators of SU(Nc), the naive discretisation of the n = 0

part of eq. (2.10) then becomes

S
(eff)
E (z) = β

(eff,0)
G (z)

∑

x

[

∑

µ<ν

(

1− 1

Nc
ReTrP (0)

µν

)

+ (am0)
2
∑

µ

(

1− 1

Nc
ReTrU (0)

µ

)

]

.

(4.8)

An action of the form in eq. (4.8) is of course not gauge invariant, and thus in general

not (perturbatively) renormalisable. It also does not yield the correct naive continuum

limits for the cubic and quartic self-interactions, if α3, α4 6= 1. Nevertheless, we might still

hope eq. (4.8) to contain some qualitative features of the effective low-energy dynamics, to

the extent that the theory is weakly coupled, and the results are only moderately dependent

of the lattice spacing (or ultraviolet physics), as may indeed be expected to be the case in

two dimensions [2].

The observable we measure on the lattice is the static force. The definitions follow

eqs. (3.1), (3.2) and (3.4), only the Wilson line is constructed by multiplying together the
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link matrices around the rectangle, both in the non-abelian and in the abelian cases. We

determine the force then as

F

(

r +
1

2
a; z

)

≡ V (r + a; z)− V (r; z)

a
. (4.9)

Note that in the abelian case the potential is invariant in r → L − r and the force then,

for a finite L, takes the form

F (r; z) =
∑

n≥0

ψ2n(z)

2

sinhmn(L/2− r)
sinh (mnL/2)

, (4.10)

instead of eq. (3.5). For the non-abelian case such a periodicity would only arise for a force

defined from the correlator of two Polyakov loops (see, e.g, [23]).

5. Numerical results

We now present our numerical results, obtained with standard Monte Carlo simulation

techniques. The update is a 1:4 mixture of heat-bath [24, 25] and over-relaxation [26]

sweeps. In the SU(2) simulations, we use the following statistical noise reduction steps in

the Wilson loop measurements:

1. First, we perform link integration [27] for the links in the t-direction, substituting

each with the appropriate (and exactly calculable) local statistical average link.

2. Then, we do two smearing [28] steps for the links along the (r, z)-plane, “fuzzying”

the r-sides of the Wilson loops by two lattice units in the z-direction, with rapidly

decreasing weights. This enhances the coupling to the lowest modes, which are slowly

varying in z.

Both the link integration and the smearing must be performed taking into account the

varying coupling βG(z). We perform between 105 and 4 · 105 sweeps and collect the data

typically in 100 bins. Errors are estimated with a standard jackknife analysis.

As our goals here are of a qualitative nature only, we should stress that these are still

very simple small scale simulations. Presumably our numerics could have been significantly

improved for instance by implementing the advanced methods introduced in [23].

5.1 Gaussian weight function

We will start with a study of a gaussian weight function,

∆(z) ≡ ∆0 exp
(

−1

2
m2z2

)

. (5.1)

The spectrum following from it is discussed in appendix A.1, and goes as mn =
√
nm,

n = 0, 1, 2, . . . . The zero mode, ψc ≡ ψ0, does have a finite coupling in this case, since
∫

z∆(z) is finite. Note that even though the wave function ψc is constant in z, this mode

is said to have been localised, in the sense that ∆(z)ψ2
c is centered around z = 0.
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Figure 1: The force F (r; z) for the gaussian weight function, eq. (5.1), at different fixed values of

z, in the abelian (left; volume = 482 × 14) and non-abelian cases (right; volume = 242 × 14). The

perturbative values are also shown. The abelian case has a finite slope because of the periodicity

discussed around eq. (4.10).

The original theory has two parameters, ∆0, m. As both of them are dimensionful

([∆0] = GeV−1, [m] = GeV in (2+1)d), continuum physics only depends on their product.

Moreover, the mass spectrum, and thus the dynamics of the abelian theory, are completely

independent of ∆0. Correspondingly, it appears that the non-abelian theory can be made

weakly interacting by choosing a large value of m ·∆0. This argument might fail, however,

because m0 ·∆(z) is exponentially small at large z.

The lattice introduces a further dimensionful parameter, the lattice spacing a. It

should be chosen small enough such that discretisation effects are harmless. Somewhat

arbitrarily, we then fix a,m,∆0 such that

(am)2 = 0.1 ,
4∆0

a
= 60.0 . (5.2)

Thereby the theory should be weakly coupled (m ·∆0 ≈ 4.7), and also close to continuum

behaviour (a · m ≈ 0.3). The extent of the lattice in the z-direction is chosen as 14 a ≈
4.4m−1 (cf. figure 1).

The massless zero mode present in the system should dominate the physics at large

distances. Its coupling is independent of z and, according to eqs. (3.6) and (3.8),

F (r; z) =
1

2
CAψ

2
c =

CA
2
∫

z′ ∆(z′)
, (5.3)

where CA = 1 for U(1), 3/4 for SU(2). The other modes give exponentially suppressed

contributions, according to eq. (3.5).

In fact, we can easily make an exact continuum prediction for the full force F (r; z) in the

abelian case. The analytic values of mn =
√
nm and ψn(z = 0) are given in appendix A.1,
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Figure 2: The force F (r; z) for the sharp weight function, eq. (5.4), at z = 0 in the abelian (left)

and non-abelian cases (right). In the abelian case (where no noise reduction techniques were used)

the force is anti-symmetric with respect to r/a = 15. For comparison we also show the result from

a 2d simulation based on eq. (4.8).

and can be plugged into eq. (4.10). The prediction is compared with numerical data in

figure 1 (left). Although the data becomes noisy at large r, we can conclude that there is

agreement within statistical errors, confirming that discretisation effects are under control.

The numerical result for F (r; z) in the SU(2) case is shown in figure 1 (right). It

indicates that the large distance behaviour is successfully predicted by the perturbative

analysis. Moreover, the fact that the constant value to which F (r; z) tends does not

depend on z confirms that the constant mode dominates in that regime. We see also the

divergence of F (r; z) at small distances, as in the U(1) data. Qualitatively, the U(1) and

SU(2) cases yield very similar results. This is a peculiarity of 2d physics, however; had we

compactified onto three dimensions, our expectation would be F (r; z) ∼ 1/r for U(1), and

yet still the confining constant force for SU(2).

5.2 Sharp weight function

We next study a warped “sharp” weight function,

∆(z) ≡ ∆0 exp
(

−M |z|+ 1

2
m2z2

)

. (5.4)

The corresponding spectrum is discussed in appendix A.2.

In addition to the requirements for the gaussian case above, leading to a weak effective

coupling and small discretisation effects, we are now faced with an additional constraint, as

well as an additional parameter allowing to satisfy it: we want to tune M/m such that the

“fundamental mode” ψ0(z), the one with the lightest non-zero mass m0, is much lighter

than the next mode, with mass m1. This tends to make the choice of parameters somewhat

less transparent. From the point of view of the infinite volume setup, the zero mode ψc is

an artifact of the simulation, whose effects ought also to be kept numerically small.
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In practice, we choose the parameters as

am = 0.50 , aM = 0.75 ,
4∆0

a
= 35.0 . (5.5)

The spectrum resulting from these parameters is discussed in appendix A.2. The mass of

the “fundamental mode”, m0, is (m0/m)2 = 0.235. In lattice units, therefore,

ξ0
a
≡ (am0)

−1 ≈ 4.1 . (5.6)

The first excited state with a finite coupling ψn(z) at z = 0, on the other hand, has a

correlation length ξ2/a ≈ 1.4. Thus the fundamental mode should indeed dominate the

infrared physics. For the lattice size used, 302 × 18, the effective couplings of the zero and

fundamental mode are

aψc ≈ 0.048 , aψ0(0) ≈ 0.194 . (5.7)

We observe that because of the finite volume, aψc is not quite zero yet. The contributions

from the different modes to a2F (r; z) follow from eq. (3.5) and, fortunately, the effect of

aψc turns out to be smaller than our error bars. Note also that a dimensionless 2d effective

coupling can be estimated as
ψ0
πm0

≈ 0.79

π
, (5.8)

and the parameters α3 and α4 defined in eq. (3.10) evaluate to

α3 = 0.804 α4 = 0.749 , (5.9)

suggesting that the perturbative picture, as well as a 2d action of the form in eq. (4.8),

should be qualitatively applicable.

The data is shown in figure 2. In the abelian case, we insert the values of ψn(z = 0)

andmn computed in appendix A into eq. (4.10), to obtain the continuum prediction, shown

with the dashed-dotted line. The dashed line shows the contribution of the fundamental

mode alone. The simulation is quite consistent with the exponential decay of F (r; z).

However, the periodicity in the r-direction makes the extraction of the force quite difficult

and noisy when r ≈ L/2.
In the SU(2) case, the value of the fundamental mode prediction at r = 0 sets the

scale for the asymptotic confining force, were the fundamental mode massless (dashed-

dotted line). Clearly, the lattice data is consistent rather with a decaying force, or the

“breaking of the string”, on a distance scale given by ξ0 = m−10 . As a comparison, we show

also the result for the 2d system, eq. (4.8), using the tree-level values of aψ0(0), am0 as

input. We observe the same qualitative behaviour, although the (2+1)-dimensional case

leads to a stronger force at small distances, due to the exchange of higher modes.

Finally, we reiterate that because of the finite value of aψc in our finite box (cf.

eq. (5.7)), the 3d force should at very large distances still approach a finite non-vanishing

value, ∼ 0.001, which is however beyond our resolution.

– 11 –



J
H
E
P
0
1
(
2
0
0
3
)
0
6
8

0.0 4.0 8.0 12.0 16.0

r/a

0.000

0.005

0.010

0.015

0.020

a2  F
(r

;z
)

3d simulation, z = 0
all modes
fundamental mode

Smooth profile, U(1)

0.0 4.0 8.0 12.0 16.0

r/a

0.000

0.005

0.010

0.015

0.020

a2  F
(r

;z
)

3d simulation, z = 0
2d simulation
massive fundamental mode
massless fundamental mode

Smooth profile, SU(2)

Figure 3: The force F (r; z) for the smooth weight function, eq. (5.10), at z = 0, in the abelian

(left) and non-abelian cases (right). In the abelian case (where no noise reduction techniques were

used) the force is anti-symmetric with respect to r/a = 15. For comparison we also show the result

from a 2d simulation based on eq. (4.8).

5.3 Smooth weight function

We end by studying a “smooth” weight function,

∆(z) = ∆0 exp
(

−1

2
M2z2 +

1

4
m4z4

)

. (5.10)

The corresponding spectrum is discussed in appendix A.3.

We choose the parameters and lattice spacing such that

am = 0.2778 , aM = 0.3889 ,
4∆0

a
= 35.0 . (5.11)

According to appendix A.3, the correlation length of the fundamental mode is then

ξ0
a

= (am0)
−1 ≈ 5.2 . (5.12)

The couplings of the zero and fundamental mode are, at z = 0,

aψc ≈ 0.054 , aψ0(0) ≈ 0.134 . (5.13)

These determine the string tension, according to eq. (3.5). We also note that the dimen-

sionless coupling related to the fundamental mode is

ψ0
πm0

≈ 0.69

π
, (5.14)

and the parameters α3 and α4 defined in eq. (3.10) evaluate to

α3 = 0.705 α4 = 0.695 , (5.15)

– 12 –



J
H
E
P
0
1
(
2
0
0
3
)
0
6
8

supporting again the qualitative applicability of the perturbative picture, as well as of the

2d action in eq. (4.8).

The lattice simulation is carried out with the volume 302 × 18. The data is shown

in figure 3. We proceed as in the “sharp” case to compute the prediction for F (r; z).

The U(1) data is consistent with the analytic prediction, although large statistical er-

rors make this statement rather weak. For the SU(2) case we again observe that the

behaviour of the 3d simulation agrees at large distances within statistical errors with

the massive fundamental mode prediction, as well as with results obtained with the 2d

action in eq. (4.8), using the tree-level values of aψ0(0), am0 as input. At smaller dis-

tances, the static force is stronger in the (2+1)-dimensional system, as noted previously.

Note also again that because of the finite value of aψc in our finite box (cf. eq. (5.13)),

the 3d force should at very large distances still approach a finite non-vanishing value,

∼ 0.001.

6. Conclusions

We have studied in this paper some physical properties of a pure gauge field theory, living in

a space where the coupling constant g2(z) ≡ 1/∆(z) varies along one spatial direction. Us-

ing a mode decomposition and working in the gauge Az = 0, an effective lower dimensional

action was already derived in [1]. However, in the non-abelian case, several complications

arise: all Kaluza-Klein like modes are coupled through cubic and quartic terms, possible

non-perturbative effects in regions where the coupling is large make the validity of the

perturbative analysis unclear, and the naively truncated action for the low-energy sector

is non-renormalisable. These difficulties motivated a lattice simulation of the non-abelian

theory in (2+1) dimensions, as well as, for calibration, simulations of the abelian theory in

the same background (in which case our analytic predictions are exact in the continuum

limit).

In the case of a gaussian profile ∆(z), our numerical data confirms the presence of a

massless constant mode, which gives rise to a constant force both in the abelian and the

non-abelian cases, in spite of the coupling becoming strong at large z. Note that even

though the mode is constant in z, this mechanism is conventionally called the localisation

of massless vector bosons, since ∆(z)×[the mode] is sharply centered.

For two different profiles such that
∫

z∆(z) =∞, on the other hand, where the mass-

less mode decouples from the theory, the lattice data is consistent with the long distance

dynamics being dominated by a single massive localised “fundamental” vector mode. Be-

cause of a large hierarchy between the mass m0 of the fundamental mode, and those of

the higher modes, this regime can set in even at distances somewhat smaller than the

correlation length of the fundamental mode.

Thus we confirm the qualitative picture based on perturbation theory in these (2+1)-

dimensional systems. It would be interesting to extend the study to a (3+1)-dimensional

case, to check whether our conclusions depend on the peculiarities of the two-dimensional

effective theory.
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A. Energy spectra for various weight functions

In this appendix, we determine explicitly the spectra for the various weight functions

appearing in this paper.

As mentioned in [1], we can write eq. (2.6) in another form by introducing χn(z) =
√

∆(z)ψn(z). Then the eigenvalue equation takes the familiar form

−χ′′n + Vo(z)χn = m2
nχn , (A.1)

where

Vo(z) ≡W 2(z)−W ′(z) , W (z) ≡ −∆′(z)

2∆(z)
. (A.2)

One may also introduce

Vs(z) ≡W 2(z) +W ′(z) ; (A.3)

its eigenvalues are the same as those of Vo(z), except that one of the two has a normalisable

exact zero mode, and the symmetry properties of the two sets of wave functions with the

same energy are the opposite [29]. Thus, denoting m2
n = E(n) and assuming E

(0)
s = 0, we

have E
(n)
o = E

(n+1)
s , n ≥ 0.

It is useful to note that if ∆(z) = ∆0 exp(f(z)), then

W = −1

2
f ′ , Vo =

1

4
(f ′)2 +

1

2
f ′′ . (A.4)

Therefore, the eigenvalues are independent of ∆0.

A.1 Gaussian weight function

We start by considering the gaussian weight function, eq. (5.1), which implies that

W =
1

2
m2z , Vo =

1

2
m2

(1

2
m2z2 − 1

)

. (A.5)

The eigenvalue equation, eq. (A.1), is just of the form of a harmonic oscillator, with shifted

energy levels, and is immediately solved. We obtain

mn = m
√
n , n ≥ 0 . (A.6)

Note the existence of a normalisable zero energy solution. It appears here for Vo rather

than Vs, since
∫

z∆(z) is finite.
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Figure 4: Left: The fundamental mode ψ0(z) and the profile ∆(z) for the sharp wave function,

eq. (5.4), at c = M/m = 1.5, R = 4.5/m, and a specific a (see table 1). The horizontal axis is for

ζ = zm. Right: the first excited even modes.

We also know the wave functions exactly in this case,

ψn(z) =
1

2n/2
1

π1/4
√
∆0

1√
n!

Hn

(

mz√
2

)

, (A.7)

where Hn are the Hermite polynomials. Using the fact that Hn have the parity of their

index and that

H2n(z = 0) = (−1)n (2n)!

n!
, (A.8)

we arrive at the expression

ψ2n(z = 0) =
1

π1/4
√
∆0

(

−1

2

)n
√

(2n)!

n!
∼ (−1)n√

π∆0

1

n1/4
, (A.9)

where the last step is the large n asymptotic behaviour. This means that the higher modes

are not only more massive, but also more weakly coupled at z = 0.

A.2 “Sharp” weight function

The sharp weight function, eq. (5.4), leads to

W =
1

2

(

M sign(z)−m2z
)

. (A.10)

It is convenient to rescale everything by m: ζ ≡ mz, c ≡ M/m, νn ≡ m2
n/m

2. Eq. (A.1)

then becomes

−χ′′n +
[

1

4
(ζ − c sign(ζ))2 + 1

2
− c δ(ζ)

]

χn = ν(n)o χn . (A.11)

The solutions only depend on c. Note that although we are using the same notation as

in eq. (A.1), χn is here treated as a function of ζ rather than z.
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Since the Hamiltonian is invariant under parity, one can classify its eigenfunctions as

symmetric and antisymmetric under ζ → −ζ. We label symmetric and antisymmetric

states with even and odd indices, respectively.

Infinite volume. We start by discussing the infinite volume case. Here we solve the

problem by utilising Vs. Note that, apart from the usual relation E
(n)
o = E

(n+1)
s , n ≥ 0,

there is now the additional relation that the eigenvalues obtained with Vs and Vo, coming

with wave functions antisymmetric in (z → −z), are trivially related by the addition of

m2, because the antisymmetric state does not “see” the δ function at the origin. This can

be expressed as E
(p)
o = E

(p)
s +m2, for p odd. Therefore, the spectrum is of the form

E(0)
o = E(1)

s = ε ,

E(1)
o = E(1)

s +m2 = E(2)
s ,

E(2)
o = E(3)

s > E(2)
s , . . . . (A.12)

In other words, Vs has a symmetric state with exactly zero energy, and an antisymmetric

one with an exponentially small energy, ε (cf. eq. (A.24) below). Then Vo has a symmetric

ground state with the energy ε, and a doublet of states with a much higher energy, E
(3)
s ≈

E
(2)
s À ε.

The explicit form of the dimensionless equation with Vs becomes

−χ′′n +
[1

4
(ζ − c sign(ζ))2 − 1

2
+ cδ(ζ)

]

χn = ν(n)s χn . (A.13)

Introducing the Kummer function

φ(a; b; ζ) = 1 +
a

b

ζ

1!
+
a(a+ 1)

b(b+ 1)

ζ2

2!
+ · · · =

∞
∑

n=0

(a)n
(b)n

ζn

n!
, (A.14)

which satisfies

ζ
d2φ

dζ2
+ (b− ζ)dφ

dζ
− aφ = 0 , (A.15)

the general solution of eq. (A.13) reads, for ζ 6= 0 and denoting ν
(n)
s → ν,

χ(ζ) = e−(|ζ|−c)
2/4

[

Aφ

(

−ν
2
;
1

2
;
(|ζ| − c)2

2

)

+B (|ζ| − c)φ
(

1− ν
2

;
3

2
;
(|ζ| − c)2

2

)]

,

(A.16)

where A,B are constants. For ζ < 0, we denote χ by χL, with constants AL, BL, and for

ζ > 0, χR, with AR, BR. The symmetric wave functions obviously have AL = AR, BL =

BR, the antisymmetric ones AL = −AR, BL = −BR.
The boundary conditions we have to impose on the coefficients are:

(a) χR(0) = χL(0),

(b) χ′R(0) = χ′L(0) + c χL,R(0),

(c) limζ→∞ χR(ζ) = limζ→−∞ χL(ζ) = 0 .

The second comes from integrating both sides of eq. (A.13) from −δ to δ.
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In both the symmetric and antisymmetric cases, the third condition imposes

BR = −
√
2
Γ((1− ν)/2)
Γ(−ν/2) AR , (A.17)

where we used that for large ζ,

φ(a; b; ζ) ≈ eζζa−b Γ(b)
Γ(a)

. (A.18)

For symmetric wave functions, the condition (a) is automatically satisfied. The con-

dition (b) yields

BR =
cφ′1

φ3 + c2φ′3
AR , (A.19)

where φ′1 ≡ φ′(−ν/2; 1/2; c2/2), φ3 ≡ φ((1 − ν)/2; 3/2; c2/2), φ′3 ≡ φ′((1 − ν)/2; 3/2; c2/2).
Combining this with eq. (A.17), one obtains an algebraic equation for the energy levels:

−νcφ
(

1− ν
2
;
3

2
;
c2

2

)

+
√
2
Γ((1−ν)/2)
Γ(−ν/2)

[

φ

(

1− ν
2

;
3

2
;
c2

2

)

+ c2
1− ν
3

φ

(

3− ν
2

;
5

2
;
c2

2

)

]

= 0 ,

(A.20)

where we made use of

φ′(a; b; ζ) =
a

b
φ(a+ 1; b + 1; ζ) . (A.21)

Note that since Γ(−ν/2) has a pole at ν = 0, ν = 0 is a solution for any c, as must be the

case.

For antisymmetric wave functions, the condition (a) yields

BR =
φ1
cφ3

AR , (A.22)

with the same notation as above. The condition (b) is then automatically satisfied. To-

gether with eq. (A.17), one again obtains an algebraic equation for the energy levels:

Γ
(

−ν
2

)

φ

(

−ν
2
;
1

2
;
c2

2

)

+
√
2 cΓ

(

1− ν
2

)

φ

(

1− ν
2

;
3

2
;
c2

2

)

= 0 . (A.23)

In the limit c À 1, the approximate solution for the lowest energy level is obtained by

setting ν → 0 in the argument of the first φ appearing, whereby φ(0; 1/2; c2/2) = 1; we

then get

ν(0)o = ν(1)s ≈
√

2/π c e−c
2/2 . (A.24)

Some numerical values for ν (expressed as ν
(n)
o = ν

(n+1)
s ) are included in table 1.

Finite volume. Let us now consider the same system, but in a box with periodic bound-

ary conditions at ζ = ±R/m ≡ ±R̂, rather than in infinite volume:

χL(−R̂) = χR(R̂) . (A.25)

Then the spectrum changes. We will study this system directly in terms of Vo, rather than

Vs. The general form of the solution in terms of the Kummer functions remains the same,

except that the Hamiltonian at ζ 6= 0 has changed by a constant.
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We will now need to impose a boundary condition at ζ = R̂. Integrating the equation

of motion for ψ from R̂− δ to R̂+ δ, it is easily seen that ψ′ must be continuous at ζ = R̂

(because ∆ is). This translates into

χ′R(R̂) + Ŵ (R̂)χR(R̂) = 0 , (A.26)

where Ŵ ≡W/m. This means that χ’s derivative is not continuous at the boundary, which

is due to the discontinuity of ∆′ at ζ = R̂. The other boundary condition for the symmetric

states is eq. (A.26) applied at the origin or, equivalently, condition (b) above,

χ′R(0) + Ŵ (0)χR(0) = 0 . (A.27)

Note that eqs. (A.26) and (A.27) imply that ψ ′R(0) = ψ′R(R) = 0. In the antisymmetric

case, the complete boundary conditions are

χR(0) = 0 , χR(R̂) = 0 , (A.28)

and eq. (A.26) then imposes that χ′R(R̂) vanish as well.

For symmetric wave functions, eq. (A.27) implies

AR = DBR , D ≡ (1− c2)φ3 + c2φ′3
c(φ′1 − φ1)

, (A.29)

where the notation is as above. Inserting into eq. (A.26),

[

1− (R̂ − c)2
]

φR̂3 + (R̂− c)2φ′R̂3 + (R̂− c)(φ′R̂1 − φR̂1 )D = 0 , (A.30)

where φR̂1 ≡ φ(−ν/2; 1/2; (R̂ − c)2/2), φ′R̂1 ≡ φ′(−ν/2; 1/2; (R̂ − c)2/2), φR̂3 ≡ φ((1 − ν)/2;
3/2; (R̂ − c)2/2), φ′R̂3 ≡ φ′((1− ν)/2; 3/2; (R̂ − c)2/2). This equation determines ν, after

which the actual energy level is found by adding 1.

For antisymmetric wave functions, eqs. (A.28) imply that

BR =
φ1
cφ3

AR , BR =
φR̂1

(c− R̂)φR̂3
AR . (A.31)

These are compatible only if

(c− R̂)φ1φR̂3 = cφ3φ
R̂
1 , (A.32)

which determines the eigenvalues.

As an example, some numerical values are given in table 1. The doublet structure as

discussed above is visible in the infinite volume results (levels 1 & 2; 3 & 4; . . . ). It can

also be observed that for small n, the spectrum is roughly linear in n (like in eq. (A.6) for

m2
n), while for large values within a finite box, it starts to resemble more the corresponding

spectrum ∼ n2.
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sharp profile, c = 1.5 sharp profile, c = 2.5

R̂ = 4.5 R̂ =∞ R̂ = 4.5 R̂ =∞
n ν

(n)
o aψn(0) ν

(n)
o ν

(n)
o aψn(0) ν

(n)
o

c 0.000 0.048 — 0.000 0.201 —

0 0.235 0.194 0.209 0.154 0.148 0.038

1 1.235 0.000 1.209 1.154 0.000 1.038

2 1.945 0.116 1.643 1.815 0.101 1.191

3 2.945 0.000 2.643 2.815 0.000 2.191

4 4.432 0.113 3.201 4.298 0.106 2.478

5 5.432 0.000 4.201 5.298 0.000 3.478

6 7.854 0.112 4.829 7.723 0.109 3.867

7 8.854 0.000 5.829 8.723 0.000 4.867

8 12.24 0.112 6.504 12.11 0.110 5.327

9 13.24 0.000 7.504 13.11 0.000 6.327

Table 1: Eigenvalues for the sharp profile. For the wave functions at origin one needs also the

values of am,∆0/a, entering as aψn(0) ∝ (am)1/2(∆0/a)
−1/2, if c, R̂ are kept fixed; we have assumed

am = 0.5,∆0/a = 8.75, for both values of c.
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0.0
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0.2
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0
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Figure 5: Left: The fundamental mode ψ0(z) and the profile ∆(z) for the smooth wave function,

eq. (5.10), at c =M/m = 1.4, R = 2.5/m, and a specific a (see table 2). The horizontal axis is for

ζ = zm. Right: the first excited even modes.

A.3 “Smooth” weight function

The smooth weight function, eq. (5.10), leads to

W =
1

2
(M2z −m4z3) . (A.33)

We rescale again everything by m: ζ = mz, c = M/m, νn = m2
n/m

2. Eq. (A.1) then
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smooth profile, c = 1.4 smooth profile, c = 2.0

R̂ = 2.5 R̂ =∞ R̂ = 3.15 R̂ =∞
n ν

(n)
o aψn(0) ν

(n)
o ν

(n)
o aψn(0) ν

(n)
o

c 0.000 0.054 — 0.000 0.034 —

0 0.484 0.134 0.388 0.033 0.112 0.030

1 3.020 0.000 3.016 3.310 0.000 3.310

2 6.154 0.112 5.862 5.517 0.065 5.513

3 9.430 0.000 9.373 7.912 0.000 7.912

4 14.48 0.112 13.50 11.16 0.075 11.15

5 18.51 0.000 18.17 14.95 0.000 14.95

6 25.83 0.112 23.32 19.27 0.075 19.21

7 30.17 0.000 28.92 23.92 0.000 23.92

8 40.20 0.112 34.95 29.20 0.074 29.03

9 44.63 0.000 41.37 34.57 0.000 34.54

Table 2: Eigenvalues for the smooth profile. For the wave functions at origin one needs also

the values of am,∆0/a, entering as aψn(0) ∝ (am)1/2(∆0/a)
−1/2, if c, R̂ are kept fixed; we have

assumed am = 5.0/18.0,∆0/a = 8.75, for c = 1.4; and am = 0.45,∆0/a = 25.0, for c = 2.0.

becomes

−χ′′n +
[1

4
ζ2(c2 − ζ2)2 − 1

2
c2 +

3

2
ζ2
]

χn = ν(n)o χn . (A.34)

The solutions thus only depend on c. The boundary conditions are as in eqs. (A.26), (A.27)

and (A.28), for the symmetric and antisymmetric cases, respectively.

This time we have only solved the eigenvalue problem numerically. The profile ∆(z),

the fundamental wave function ψ0(z), as well as the first excited symmetric wave functions,

are shown in figure 5, for c =M/m = 1.4. Examples of eigenvalues are given in table 2.

B. Gauge invariant correlators in the abelian case

In the abelian theory, eq. (2.1), the field strength tensor Fµν is gauge invariant. This allows

one to measure directly various gauge invariant correlation functions displaying the essential

features of the spectrum {mn}, as we will show with a specific example. These correlators

are however not available in the non-abelian case. Other possibilities exist, but they contain

either composite operators, making a qualitative distinction between genuinely confining

and Higgs-like phases difficult, or non-local operators, making the analysis of ultraviolet

divergences as well as practical measurements hard.

Let us define

Op(x; z) =
1

T

∫

dt Fxt(x, t, z)e
ipt ,

O(n)
p (x) =

∫

z
∆(z)ψn(z)Op(x; z) . (B.1)
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We might then consider, e.g., a weighted average over the z-direction,

G(all)
p (r) ≡

∫

z
∆(z)

∫

dxOp(x; z)[Op(x+ r; z)]∗ , (B.2)

or, alternatively, a correlator only getting a contribution from some specified mode,

G(n)
p (r) ≡

∫

dxO(n)
p (x)[O(n)

p (x+ r)]∗ . (B.3)

Employing the unitary gauge propagator (p,x,x′ are 2d vectors)

〈Fmxt (x)F nxt(x′)〉 =
∫

d2p

(2π)2
p2

p2 +m2
n

δmneip·(x−x
′) , (B.4)

one easily finds

G(all)
p (r) =

∑

n

G(n)
p (r) ,

G(n)
p (r) = δ(r)− m2

n

2
√

p2 +m2
n

e−|r|
√
p2+m2

n . (B.5)

Therefore, the spectrum {mn} again manifests itself in the form of the exponential decay.

Note that in contrast to the force F (r; z), however, the wave functions ψn(z) do not appear

in these predictions.

C. The SU(Nc) string tension in 2d

In this section we recall briefly the results for the static potential of pure SU(Nc) gauge

theory in two dimensions. For a more detailed discussion see, e.g., ref. [30].

The result for the abelian case is shown in eq. (3.3), with
∑

n ψ
2
n(z)→ 1. In the non-

abelian case, that result is at leading order simply multiplied by an additional factor CA =

(N2
c − 1)/(2Nc), coming from the sum over the Hermitian generators of the fundamental

representation,
∑

a T
aT a. If we define CA = 1 for U(1), the leading order result is then as

written in eqs. (3.5) and (3.8).

It remains to show that there are no higher order corrections in the non-abelian case.

The naive argument goes as follows. As the potential is gauge fixing independent by

construction, we can choose the gauge At = 0. But then the cubic and quartic interactions

vanish, so that indeed no further corrections should arise.
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