291 research outputs found

    Studies of transverse and longitudinal relaxations of 55^{55}Mn in molecular cluster magnet Mn12_{12}Ac

    Full text link
    The transverse and longitudinal relaxation rates 1/T2T_2 and 1/T1T_1 of 55^{55}Mn in molecular cluster magnet Mn12_{12}Ac have been measured al low temperatures down to 200mK and in the fields upto 9T. Both of 1/T2T_2 and 1/T1T_1 exhibit remarkable decreases with decreasing temperature and with increasing field, with the relative relation T1/T2200T_1/T_2 \approx 200. In the analysis, we adopt a simple model that the thermal fluctuation of the cluster spin SS=10 associated with the spin-phonon interactionis, is only due to the excitation to the first excited state from the ground state with the average life-times τ1\tau_ 1 and τ0\tau_0 (τ0\tau_ 0\ggτ1\tau_1). We show that 1/T2T_2 is interpreted in terms of the strong collision regime as given by 1/τ0\tau_ 0, and that 1/T1T_1 is understood by the high-frequency limit based on standard perturbation treatment for the step-wise fluctuating field, thus being proportional to 1/τ0ωN2\tau_0\omega_N^2.Comment: 12 pages, 11 fugures, revtex

    Small Corrections to the Tunneling Phase Time Formulation

    Full text link
    After reexamining the above barrier diffusion problem where we notice that the wave packet collision implies the existence of {\em multiple} reflected and transmitted wave packets, we analyze the way of obtaining phase times for tunneling/reflecting particles in a particular colliding configuration where the idea of multiple peak decomposition is recovered. To partially overcome the analytical incongruities which frequently rise up when the stationary phase method is adopted for computing the (tunneling) phase time expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and a unidimensional squared potential barrier where the scattered wave packets can be recomposed by summing the amplitudes of simultaneously reflected and transmitted wave components so that the conditions for applying the stationary phase principle are totally recovered. Lessons concerning the use of the stationary phase method are drawn.Comment: 14 pages, 3 figure

    Gravitational waves from rapidly rotating neutron stars

    Full text link
    Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of B1012B\approx 10^{12} G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the accretion torque in these systems, and show that in most cases the disc/magnetosphere interaction can account for the observed spin periods.Comment: To appear in 'Gravitational Waves Astrophysics: 3rd Session of the Sant Cugat Forum on Astrophysics, 2014', Editor: Carlos F. Sopuert

    In silico assessment of the potential of basalt amendments to reduce N2O emissions from bioenergy crops

    Get PDF
    The potential of large‐scale deployment of basalt to reduce N2O emissions from cultivated soils may contribute to climate stabilization beyond the CO2‐removal effect from enhanced weathering. We used 3 years of field observations from maize (Zea mays) and miscanthus (Miscanthus × giganteus) to improve the nitrogen (N) module of the DayCent model and evaluate the potential of basalt amendments to reduce N losses and increase yields from two bioenergy crops. We found 20%–60% improvement in our N2O flux estimates over previous model descriptions. Model results predict that the application of basalt would reduce N2O emissions by 16% in maize and 9% in miscanthus. Lower N2O emissions responded to increases in the N2:N2O ratio of denitrification with basalt‐induced increases in soil pH, with minor contributions from the impact of P additions (a minor component of some basalts) on N immobilization. The larger reduction of N2O emissions in maize than in miscanthus was likely explained by a synergistic effect between soil pH and N content, leading to a higher sensitivity of the N2:N2O ratio to changes in pH in heavily fertilized maize. Basalt amendments led to modest increases in modeled yields and the nitrogen use efficiency (i.e., fertilizer‐N recover in crop production) of maize but did not affect the productivity of miscanthus. However, enhanced soil P availability maintained the long‐term productivity of crops with high nutrient requirements. The alleviation of plant P limitation led to enhanced plant N uptake, thereby contributing to lower microbial N availability and N2O emissions from crops with high nutrient requirements. Our results from the improved model suggest that the large‐scale deployment of basalt, by reducing N2O fluxes of cropping systems, could contribute to the sustainable intensification of agriculture and enhance the climate mitigation potential of bioenergy with carbon capture and storage strategies

    Spin dynamics of Mn12-acetate in the thermally-activated tunneling regime: ac-susceptibility and magnetization relaxation

    Full text link
    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(w)\chi(w) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(w)\chi(w). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study of these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.Comment: 22 pages, 23 figures; submitted to Phys. Rev. B; citations/references adde

    The Exact Correspondence between Phase Times and Dwell Times in a Symmetrical Quantum Tunneling Configuration

    Full text link
    The general and explicit relation between the phase time and the dwell time for quantum tunneling or scattering is investigated. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, here we demonstrate that these two distinct transit time definitions give connected results where, however, the phase time (group delay) accurately describes the exact position of the scattered particles. The analytical difficulties that arise when the stationary phase method is employed for obtaining phase (traversal) times are all overcome. Multiple wave packet decomposition allows us to recover the exact position of the reflected and transmitted waves in terms of the phase time, which, in addition to the exact relation between the phase time and the dwell time, leads to right interpretation for both of them.Comment: 11 pages, 2 figure

    The preservation and interpretation of δ34 S values in charred archaeobotanical remains

    Get PDF
    The measurement of sulphur isotope (δ34S) values in charred plant remains has the potential to inform understanding of the spatial configuration and ecology of crop production. We investigated the effects of charring, manuring, oxidation and anaerobic soil conditions on modern cereal grain/pulse seed δ34S values, and assessed the effect of chemical pre‐treatment on charred modern and archaeobotanical grain/seed δ34S values. We used these results to interpret δ34S values in archaeobotanical material from Neolithic Çatalhöyük. Our results suggest that δ34S values can be reliably preserved in charred grain/seeds but are subject to influence by anaerobic soil conditions, the effect depending on the timing of flooding in relation to S assimilation

    Tackling transition:the value of peer mentoring

    Get PDF
    This paper is aimed at those interested in the promotion of student retention in higher education; particularly those with an interest in peer mentoring as a means of student support. It critically discusses the results of an exploratory study analysing the perceptions of peer mentors and mentees within five universities in the United Kingdom. The aim of the study was to analyse how student peer mentoring can aid transition into university by focusing specifically on how senior students can support their junior counterparts in their first year at university. The paper discusses the results of a survey which was completed by 329 student peer mentors and mentees. Focusing on the benefits and outcomes of participation in Mentoring Programmes, the survey was distinctive in that it asked mentors and mentees similar questions. From a theoretical perspective, the paper contributes to debates about peer support in higher education showing that participation in such programmes can have positive outcomes from both social and pedagogic perspectives. Practically speaking, the results have important implications for Higher Education Institutions as the research highlights the importance of putting into place formally structured Peer Mentoring Programmes which facilitate student support at a time when new students are most at risk of ‘dropping out’

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
    corecore