405 research outputs found

    Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America

    Get PDF
    Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Eph/Ephrin Profiling in Human Breast Cancer Reveals Significant Associations between Expression Level and Clinical Outcome

    Get PDF
    Pre-clinical studies provide compelling evidence that Eph family receptor tyrosine kinases (RTKs) and ligands promote cancer growth, neovascularization, invasion, and metastasis. Tumor suppressive roles have also been reported for the receptors, however, creating a potential barrier for clinical application. Determining how these observations relate to clinical outcome is a crucial step for translating the biological and mechanistic data into new molecularly targeted therapies. We investigated eph and ephrin expression in human breast cancer relative to endpoints of overall and/or recurrence-free survival in large microarray datasets. We also investigated protein expression in commercial human breast tissue microarrays (TMA) and Stage I prognostic TMAs linked to recurrence outcome data. We found significant correlations between ephA2, ephA4, ephA7, ephB4, and ephB6 and overall and/or recurrence-free survival in large microarray datasets. Protein expression in TMAs supported these trends. While observed no correlation between ephrin ligand expression and clinical outcome in microarray datasets, ephrin-A1 and EphA2 protein co-expression was significantly associated with recurrence in Stage I prognostic breast cancer TMAs. Our data suggest that several Eph family members are clinically relevant and tractable targets for intervention in human breast cancer. Moreover, profiling Eph receptor expression patterns in the context of relevant ligands and in the context of stage may be valuable in terms of diagnostics and treatment

    Type I insulin-like growth factor receptor over-expression induces proliferation and anti-apoptotic signaling in a three-dimensional culture model of breast epithelial cells

    Get PDF
    INTRODUCTION: Activation of the type I insulin-like growth factor receptor (IGFIR) promotes proliferation and inhibits apoptosis in a variety of cell types. Transgenic mice expressing a constitutively active IGFIR or IGF-I develop mammary tumors and increased levels of IGFIR have been detected in primary breast cancers. However, the contribution of IGFIR activation in promoting breast cancer progression remains unknown. Mammary epithelial cell lines grown in three-dimensional cultures form acinar structures that mimic the round, polarized, hollow and growth-arrested features of mammary alveoli. We used this system to determine how proliferation and survival signaling by IGFIR activation affects breast epithelial cell biology and contributes to breast cancer progression. METHODS: Pooled, stable MCF-10A breast epithelial cells expressing wild-type IGFIR or kinase-dead IGFIR (K1003A) were generated using retroviral-mediated gene transfer. The effects of over-expression of wild-type or kinase-dead IGFIR on breast epithelial cell biology were analyzed by confocal microscopy of three-dimensional cultures. The contribution of signaling pathways downstream of IGFIR activation to proliferation and apoptosis were determined by pharmacological inhibition of phosphatidylinositol 3' kinase (PI3K) with LY294002, MAP kinase kinase (MEK) with UO126 and mammalian target of rapamycin (mTOR) with rapamycin. RESULTS: We found that MCF-10A cells over-expressing the IGFIR formed large, misshapen acinar structures with filled lumina and disrupted apico-basal polarization. This phenotype was ligand-dependent, occurring with IGF-I or supraphysiological doses of insulin, and did not occur in cells over-expressing the kinase-dead receptor. We observed increased proliferation, decreased apoptosis and increased phosphorylation of Ser(473 )of Akt and Ser(2448 )of mTOR throughout IGFIR structures. Inhibition of PI3K with LY294002 or MEK with UO126 prevented the development of acinar structures from IGFIR-expressing but not control cells. The mTOR inhibitor rapamycin failed to prevent IGFIR-induced hyperproliferation and survival signaling. CONCLUSION: Increased proliferation and survival signaling as well as loss of apico-basal polarity by IGFIR activation in mammary epithelial cells may promote early lesions of breast cancer. Three-dimensional cultures of MCF-10A cells over-expressing the IGFIR are a useful model with which to study the role of IGFIR signaling in breast cancer progression and for characterizing the effects of chemotherapeutics targeted to IGFIR signaling

    Candidate high-z proto-clusters among the Planck compact sources, as revealed by Herschel-SPIRE

    Get PDF
    By determining the nature of all the Planck compact sources within 808.4 deg2 of large Herschel surveys, we have identified 27 candidate proto-clusters of dusty star forming galaxies (DSFGs) that are at least 3σ overdense in either 250, 350 or 500 ÎŒm sources. We find roughly half of all the Planck compact sources are resolved by Herschel into multiple discrete objects, with the other half remaining unresolved by Herschel. We find a significant difference between versions of the Planck catalogues, with earlier releases hosting a larger fraction of candidate proto-clusters and Galactic Cirrus than later releases, which we ascribe to a difference in the filters used in the creation of the three catalogues. We find a surface density of DSFG candidate proto-clusters of (3.3 ± 0.7) × 10−2 sources deg−2, in good agreement with previous similar studies. We find that a Planck colour selection of S857/S545 1. Our candidate proto-clusters are a factor of 5 times brighter at 353 GHz than expected from simulations, even in the most conservative estimates. Further observations are needed to confirm whether these candidate proto-clusters are physical clusters, multiple proto-clusters along the line of sight, or chance alignments of unassociated sources

    Reducing overdiagnosis by polygenic risk-stratified screening: findings from the Finnish section of the ERSPC.

    Get PDF
    background: We derived estimates of overdiagnosis by polygenic risk groups and examined whether polygenic risk-stratified screening for prostate cancer reduces overdiagnosis. methods: We calculated the polygenic risk score based on genotypes of 66 known prostate cancer loci for 4967 men from the Finnish section of the European Randomised Study of Screening for Prostate Cancer. We stratified the 72 072 men in the trial into those with polygenic risk below and above the median. Using a maximum likelihood method based on interval cancers, we estimated the mean sojourn time (MST) and episode sensitivity. For each polygenic risk group, we estimated the proportion of screen-detected cancers that are likely to be overdiagnosed from the difference between the observed and expected number of screen-detected cancers. results: Of the prostate cancers, 74% occurred among men with polygenic risk above population median. The sensitivity was 0.55 (95% confidence interval (CI) 0.45–0.65) and MST 6.3 (95% CI 4.2–8.3) years. The overall overdiagnosis was 42% (95% CI 37–52) of the screen-detected cancers, with 58% (95% CI 54–65) in men with the lower and 37% (95% CI 31–47) in those with higher polygenic risk. conclusion: Targeting screening to men at higher polygenic risk could reduce the proportion of cancers overdiagnosed

    Modeling the TNFα-Induced Apoptosis Pathway in Hepatocytes

    Get PDF
    The proinflammatory cytokine TNFα fails to provoke cell death in isolated hepatocytes but has been implicated in hepatocyte apoptosis during liver diseases associated with chronic inflammation. Recently, we showed that TNFα is able to sensitize primary murine hepatocytes cultured on collagen to Fas ligand-induced apoptosis and presented a mathematical model of the sensitizing effect. Here, we analyze how TNFα induces apoptosis in combination with the transcriptional inhibitor actinomycin D (ActD). Accumulation of reactive oxygen species (ROS) in response to TNFR activation turns out to be critical for sustained activation of JNK which then triggers mitochondrial pathway-dependent apoptosis. In addition, the amount of JNK is strongly upregulated in a ROS-dependent way. In contrast to TNFα plus cycloheximide no cFLIP degradation is observed suggesting a different apoptosis pathway in which the Itch-mediated cFLIP degradation and predominantly caspase-8 activation is not involved. Time-resolved data of the respective pro- and antiapoptotic factors are obtained and subjected to mathematical modeling. On the basis of these data we developed a mathematical model which reproduces the complex interplay regulating the phosphorylation status of JNK and generation of ROS. This model was fully integrated with our model of TNFα/Fas ligand sensitizing as well as with a published NF-ÎșB-model. The resulting comprehensive model delivers insight in the dynamical interplay between the TNFα and FasL pathways, NF-ÎșB and ROS and gives an example for successful model integration

    Suitability of external controls for drug evaluation in Duchenne muscular dystrophy

    Get PDF
    OBJECTIVE: To evaluate the suitability of real-world data (RWD) and natural history data (NHD) for use as external controls in drug evaluations for ambulatory Duchenne muscular dystrophy (DMD). METHODS: The consistency of changes in the 6-minute walk distance (Δ6MWD) was assessed across multiple clinical trial placebo arms and sources of NHD/RWD. Six placebo arms reporting 48-week Δ6MWD were identified via literature review and represented 4 sets of inclusion/exclusion criteria (n = 383 patients in total). Five sources of RWD/NHD were contributed by Universitaire Ziekenhuizen Leuven, DMD Italian Group, The Cooperative International Neuromuscular Research Group, ImagingDMD, and the PRO-DMD-01 study (n = 430 patients, in total). Mean Δ6MWD was compared between each placebo arm and RWD/NHD source after subjecting the latter to the inclusion/exclusion criteria of the trial for baseline age, ambulatory function, and steroid use. Baseline covariate adjustment was investigated in a subset of patients with available data. RESULTS: Analyses included ∌1,200 patient-years of follow-up. Differences in mean Δ6MWD between trial placebo arms and RWD/NHD cohorts ranged from -19.4 m (i.e., better outcomes in RWD/NHD) to 19.5 m (i.e., worse outcomes in RWD/NHD) and were not statistically significant before or after covariate adjustment. CONCLUSIONS: We found that Δ6MWD was consistent between placebo arms and RWD/NHD subjected to equivalent inclusion/exclusion criteria. No evidence for systematic bias was detected. These findings are encouraging for the use of RWD/NHD to augment, or possibly replace, placebo controls in DMD trials. Multi-institution collaboration through the Collaborative Trajectory Analysis Project rendered this study feasible

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1ÎČ, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1ÎČ innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF
    • 

    corecore