Abstract

By determining the nature of all the Planck compact sources within 808.4 deg2 of large Herschel surveys, we have identified 27 candidate proto-clusters of dusty star forming galaxies (DSFGs) that are at least 3σ overdense in either 250, 350 or 500 μm sources. We find roughly half of all the Planck compact sources are resolved by Herschel into multiple discrete objects, with the other half remaining unresolved by Herschel. We find a significant difference between versions of the Planck catalogues, with earlier releases hosting a larger fraction of candidate proto-clusters and Galactic Cirrus than later releases, which we ascribe to a difference in the filters used in the creation of the three catalogues. We find a surface density of DSFG candidate proto-clusters of (3.3 ± 0.7) × 10−2 sources deg−2, in good agreement with previous similar studies. We find that a Planck colour selection of S857/S545 1. Our candidate proto-clusters are a factor of 5 times brighter at 353 GHz than expected from simulations, even in the most conservative estimates. Further observations are needed to confirm whether these candidate proto-clusters are physical clusters, multiple proto-clusters along the line of sight, or chance alignments of unassociated sources

    Similar works

    Available Versions