100 research outputs found

    The role of ligand efficiency metrics in drug discovery

    Get PDF
    The judicious application of ligand or binding efficiencies, which quantify the molecular properties required to gain binding affinity for a drug target, is gaining traction in the selection and optimisation of fragments, hits, and leads. Retrospective analysis of recently marketed oral drugs shows that they frequently have highly optimised ligand efficiency values for their target. Optimising ligand efficiencies based on both molecular size and lipophilicity, when set in the context of the specific target, has the potential to ameliorate the molecular inflation that pervades current practice in medicinal chemistry, and to increase the developability of drug candidates

    Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients

    Get PDF
    BACKGROUND: More than 85% of Rett syndrome (RTT) patients have heterozygous mutations in the X-linked MECP2 gene which encodes methyl-CpG-binding protein 2, a transcriptional repressor that binds methylated CpG sites. Because MECP2 is subject to X chromosome inactivation (XCI), girls with RTT express either the wild type or mutant MECP2 in each of their cells. To test the hypothesis that MECP2 mutations result in genome-wide transcriptional deregulation and identify its target genes in a system that circumvents the functional mosaicism resulting from XCI, we performed gene expression profiling of pure populations of untransformed T-lymphocytes that express either a mutant or a wild-type allele. METHODS: Single T lymphocytes from a patient with a c.473C>T (p.T158M) mutation and one with a c.1308-1309delTC mutation were subcloned and subjected to short term culture. Gene expression profiles of wild-type and mutant clones were compared by oligonucleotide expression microarray analysis. RESULTS: Expression profiling yielded 44 upregulated genes and 77 downregulated genes. We compared this gene list with expression profiles of independent microarray experiments in cells and tissues of RTT patients and mouse models with Mecp2 mutations. These comparisons identified a candidate MeCP2 target gene, SPOCK1, downregulated in two independent microarray experiments, but its expression was not altered by quantitative RT-PCR analysis on brain tissues from a RTT mouse model. CONCLUSION: Initial expression profiling from T-cell clones of RTT patients identified a list of potential MeCP2 target genes. Further detailed analysis and comparison to independent microarray experiments did not confirm significantly altered expression of most candidate genes. These results are consistent with other reported data

    Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2015 : the Global Burden of Disease Study 2015

    Get PDF
    Background Timely assessment of the burden of HIV/AIDS is essential for policy setting and programme evaluation. In this report from the Global Burden of Disease Study 2015 (GBD 2015), we provide national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015. Methods For countries without high-quality vital registration data, we estimated prevalence and incidence with data from antenatal care clinics and population-based seroprevalence surveys, and with assumptions by age and sex on initial CD4 distribution at infection, CD4 progression rates (probability of progression from higher to lower CD4 cell-count category), on and off antiretroviral therapy (ART) mortality, and mortality from all other causes. Our estimation strategy links the GBD 2015 assessment of all-cause mortality and estimation of incidence and prevalence so that for each draw from the uncertainty distribution all assumptions used in each step are internally consistent. We estimated incidence, prevalence, and death with GBD versions of the Estimation and Projection Package (EPP) and Spectrum software originally developed by the Joint United Nations Programme on HIV/AIDS (UNAIDS). We used an open-source version of EPP and recoded Spectrum for speed, and used updated assumptions from systematic reviews of the literature and GBD demographic data. For countries with high-quality vital registration data, we developed the cohort incidence bias adjustment model to estimate HIV incidence and prevalence largely from the number of deaths caused by HIV recorded in cause-of-death statistics. We corrected these statistics for garbage coding and HIV misclassification. Findings Global HIV incidence reached its peak in 1997, at 3.3 million new infections (95% uncertainty interval [UI] 3.1-3.4 million). Annual incidence has stayed relatively constant at about 2.6 million per year (range 2.5-2.8 million) since 2005, after a period of fast decline between 1997 and 2005. The number of people living with HIV/AIDS has been steadily increasing and reached 38.8 million (95% UI 37.6-40.4 million) in 2015. At the same time, HIV/AIDS mortality has been declining at a steady pace, from a peak of 1.8 million deaths (95% UI 1.7-1.9 million) in 2005, to 1.2 million deaths (1.1-1.3 million) in 2015. We recorded substantial heterogeneity in the levels and trends of HIV/AIDS across countries. Although many countries have experienced decreases in HIV/AIDS mortality and in annual new infections, other countries have had slowdowns or increases in rates of change in annual new infections. Interpretation Scale-up of ART and prevention of mother-to-child transmission has been one of the great successes of global health in the past two decades. However, in the past decade, progress in reducing new infections has been slow, development assistance for health devoted to HIV has stagnated, and resources for health in low-income countries have grown slowly. Achievement of the new ambitious goals for HIV enshrined in Sustainable Development Goal 3 and the 90-90-90 UNAIDS targets will be challenging, and will need continued efforts from governments and international agencies in the next 15 years to end AIDS by 2030. Copyright (C) The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licensePeer reviewe
    corecore