21 research outputs found

    Ghosts in the data: false detections in VEMCO pulse position modulation acoustic telemetry monitoring equipment

    Get PDF
    Background: False-positive data (better known as "false detections") in VEMCO VR2 acoustic telemetry monitoring studies that use pulse position modulation coding can cause biased or erroneous outcomes in data analysis. To understand the occurrence of false detections in acoustic monitoring data sets, the results of a range test experiment using eight acoustic receivers and 12 transmitters were examined. Results: One hundred and fifty one tag ID codes were recorded, 137 of which were identified as likely from false detections, 12 were from test tags, and two were from tagged sharks. False detections accounted for < 0.05 % of detections (918) in the experiment. False detection tag ID codes were not randomly distributed amongst the available codes, being more likely to occur at IDs close to tags used in the experiment. Receivers located near the bottom recorded the most false detections and tag ID codes from false detections. Receivers at the same depth did not differ significantly in the mean number of daily false detections. The daily number of false detections recorded by a receiver did not conform to a random pattern, and was not strongly correlated with daily receiver performance. Conclusions: In an era of increasing data sharing and public storage of scientific data, the occurrence of false detections is of significant concern and the results of this study demonstrate that while rare they do occur and can be identified and accounted for in analyses

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations

    Key Questions in Marine Megafauna Movement Ecology

    Get PDF
    It is a golden age for animal movement studies and so an opportune time to assess priorities for future work. We assembled 40 experts to identify key questions in this field, focussing on marine megafauna, which include a broad range of birds, mammals, reptiles, and fish. Research on these taxa has both underpinned many of the recent technical developments and led to fundamental discoveries in the field. We show that the questions have broad applicability to other taxa, including terrestrial animals, flying insects, and swimming invertebrates, and, as such, this exercise provides a useful roadmap for targeted deployments and data syntheses that should advance the field of movement ecolog

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.Supplementary Figure S1: Filtered location data (black) and tag deployment locations (red) for each species. Maps are Lambert Azimuthal projections extending from 90° S to 20° S.Supplementary Table S1: Names and coordinates of the major study sites in the Southern Ocean and on the Antarctic Continent where tracking devices were deployed on the selected species (indicated by their 4-letter codes in the last column).Online Table 1: Description of fields (column names) in the metadata and data files.Supranational committees and organisations including the Scientific Committee on Antarctic Research Life Science Group and BirdLife International. National institutions and foundations, including but not limited to Argentina (Dirección Nacional del Antártico), Australia (Australian Antarctic program; Australian Research Council; Sea World Research and Rescue Foundation Inc., IMOS is a national collaborative research infrastructure, supported by the Australian Government and operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent), Belgium (Belgian Science Policy Office, EU Lifewatch ERIC), Brazil (Brazilian Antarctic Programme; Brazilian National Research Council (CNPq/MCTI) and CAPES), France (Agence Nationale de la Recherche; Centre National d’Etudes Spatiales; Centre National de la Recherche Scientifique; the French Foundation for Research on Biodiversity (FRB; www.fondationbiodiversite.fr) in the context of the CESAB project “RAATD”; Fondation Total; Institut Paul-Emile Victor; Programme Zone Atelier de Recherches sur l’Environnement Antarctique et Subantarctique; Terres Australes et Antarctiques Françaises), Germany (Deutsche Forschungsgemeinschaft, Hanse-Wissenschaftskolleg - Institute for Advanced Study), Italy (Italian National Antarctic Research Program; Ministry for Education University and Research), Japan (Japanese Antarctic Research Expedition; JSPS Kakenhi grant), Monaco (Fondation Prince Albert II de Monaco), New Zealand (Ministry for Primary Industries - BRAG; Pew Charitable Trusts), Norway (Norwegian Antarctic Research Expeditions; Norwegian Research Council), Portugal (Foundation for Science and Technology), South Africa (Department of Environmental Affairs; National Research Foundation; South African National Antarctic Programme), UK (Darwin Plus; Ecosystems Programme at the British Antarctic Survey; Natural Environment Research Council; WWF), and USA (U.S. AMLR Program of NOAA Fisheries; US Office of Polar Programs).http://www.nature.com/sdataam2021Mammal Research Institut

    Animal-borne telemetry: An integral component of the ocean observing toolkit

    Get PDF
    Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management

    Decadal changes in blood delta C-13 values, at-sea distribution, and weaning mass of southern elephant seals from Kerguelen Islands

    No full text
    Changes in the foraging environment and at-sea distribution of southern elephant seals from Kerguelen Islands were investigated over a decade (2004-2018) using tracking, weaning mass, and blood delta C-13 values. Females showed either a sub-Antarctic or an Antarctic foraging strategy, and no significant shift in their at-sea distribution was detected between 2004 and 2017. The proportion of females foraging in sub-Antarctic versus Antarctic habitats did not change over the 2006-2018 period. Pup weaning mass varied according to the foraging habitat of their mothers. The weaning mass of sub-Antarctic foraging mothers' pups decreased by 11.7 kg over the study period, but they were on average 5.8 kg heavier than pups from Antarctic foraging mothers. Pup blood delta C-13 values decreased by 1.1 parts per thousand over the study period regardless of their sex and the presumed foraging habitat of their mothers. Together, these results suggest an ecological change is occurring within the Indian sector of the Southern Ocean with possible consequences on the foraging performance of southern elephant seals. We hypothesize that this shift in delta C-13 is related to a change in primary production and/or in the composition of phytoplankton communities, but this requires further multidisciplinary investigations

    Assessing the utility of two-and three-dimensional behavioural metrics in habitat usage models

    No full text
    For deep-diving, wide-ranging marine predators, foraging behaviour is often inferred from movement data. Various metrics are used to do this, and recently, metrics have been developed that consider both horizontal movement and vertical dive behaviour to better describe the use of the 3-dimensional environment these animals inhabit. However, the efficacy of these different metrics in predicting behavioural state is poorly understood. We used first passage time (2-dimensional) and first bottom time (3-dimensional) analyses on tracks derived from satelliterelayed data loggers to quantify and determine seal behavioural state while foraging at sea. Movement and dive data were collected from 38 southern elephant seals Mirounga leonina from Macquarie and Campbell Islands (in the Pacific sector of the Southern Ocean). Using a suite of environmental variables, linear mixed-effect models were derived for the 2 broad habitats visited by the seals: shelf and open ocean. The best-fitting models for each foraging metric in each habitat were then compared using a cross validation analysis to identify which foraging metric produced the best predictions of habitat use. In shelf habitats, the 3-dimensional foraging metric provided better predictions than the 2-dimensional metric, while the 2-dimensional foraging metric resulted in the best predictive capacity in the open ocean habitats. These findings highlight the importance of considering the appropriate foraging metrics when modelling foraging behaviour.12 page(s

    Regional variation in winter foraging strategies by Weddell seals in Eastern Antarctica and the Ross Sea

    Get PDF
    International audienceThe relative importance of intrinsic and extrinsic determinants of animal foraging is often difficult to quantify. The most southerly breeding mammal, the Weddell seal, remains in the Antarctic pack-ice year-round. We compared Weddell seals tagged at three geographically and hydrographically distinct locations in East Antarctica (Prydz Bay, Terre Adélie , and the Ross Sea) to quantify the role of individual variability and habitat structure in winter foraging behaviour. Most Weddell seals remained in relatively small areas close to the coast throughout the winter, but some dispersed widely. Individual utilisation distributions ( UDi , a measure of the total area used by an individual seal) ranged from 125 to 20,825 km2 . This variability was not due to size or sex but may be due to other intrinsic states for example reproductive condition or personality. The type of foraging (benthic vs. pelagic) varied from 56.6 ± 14.9% benthic dives in Prydz Bay through 42.1 ± 9.4% Terre Adélie to only 25.1 ± 8.7% in the Ross Sea reflecting regional hydrographic structure. The probability of benthic diving was less likely the deeper the ocean. Ocean topography was also influential at the population level; seals from Terre Adélie , with its relatively narrow continental shelf, had a core (50%) UD of only 200 km2 , considerably smaller than the Ross Sea (1650 km2) and Prydz Bay (1700 km2). Sea ice concentration had little influence on the time the seals spent in shallow coastal waters, but in deeper offshore water they used areas of higher ice concentration. Marine Protected Areas (MPAs) in the Ross Sea encompass all the observed Weddell seal habitat, and future MPAs that include the Antarctic continental shelf are likely to effectively protect key Weddell seal habitat
    corecore