2,981 research outputs found

    The Cosmological Supersymmetron

    Full text link
    Recently, a supersymmetric model of dark energy coupled to cold dark matter, the supersymmetron, has been proposed. In the absence of cold dark matter, the supersymmetron field converges to a supersymmetric minimum with a vanishing cosmological constant. When cold dark matter is present, the supersymmetron evolves to a matter dependent minimum where its energy density does not vanish and could lead to the present acceleration of the Universe. The supersymmetron generates a short ranged fifth force which evades gravitational tests. It could lead to observable signatures on structure formation due to a very strong coupling to dark matter. We investigate the cosmological evolution of the field, focusing on the linear perturbations and the spherical collapse and find that observable modifications in structure formation can indeed exist. Unfortunately, we find that when the growth-rate of perturbations is in agreement with observations, an additional cosmological constant is required to account for dark energy. In this case, effects on large scale structures are still present at the non-linear level which are investigated using the spherical collapse approach.Comment: 12 pages, 6 figure

    Superficial papular neuroma: Case series of a new entity

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138273/1/cup12981.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138273/2/cup12981_am.pd

    The silicon trypanosome

    Get PDF
    African trypanosomes have emerged as promising unicellular model organisms for the next generation of systems biology. They offer unique advantages, due to their relative simplicity, the availability of all standard genomics techniques and a long history of quantitative research. Reproducible cultivation methods exist for morphologically and physiologically distinct life-cycle stages. The genome has been sequenced, and microarrays, RNA-interference and high-accuracy metabolomics are available. Furthermore, the availability of extensive kinetic data on all glycolytic enzymes has led to the early development of a complete, experiment-based dynamic model of an important biochemical pathway. Here we describe the achievements of trypanosome systems biology so far and outline the necessary steps towards the ambitious aim of creating a , a comprehensive, experiment-based, multi-scale mathematical model of trypanosome physiology. We expect that, in the long run, the quantitative modelling enabled by the Silicon Trypanosome will play a key role in selecting the most suitable targets for developing new anti-parasite drugs

    Hot Gaseous Coronae around Spiral Galaxies: Probing the Illustris Simulation

    Get PDF
    The presence of hot gaseous coronae around present-day massive spiral galaxies is a fundamental prediction of galaxy formation models. However, our observational knowledge remains scarce, since to date only four gaseous coronae were detected around spirals with massive stellar bodies (2×1011 M\gtrsim2\times10^{11} \ \rm{M_{\odot}}). To explore the hot coronae around lower mass spiral galaxies, we utilized Chandra X-ray observations of a sample of eight normal spiral galaxies with stellar masses of (0.72.0)×1011 M(0.7-2.0)\times10^{11} \ \rm{M_{\odot}}. Although statistically significant diffuse X-ray emission is not detected beyond the optical radii (20\sim20 kpc) of the galaxies, we derive 3σ3\sigma limits on the characteristics of the coronae. These limits, complemented with previous detections of NGC 1961 and NGC 6753, are used to probe the Illustris Simulation. The observed 3σ3\sigma upper limits on the X-ray luminosities and gas masses exceed or are at the upper end of the model predictions. For NGC 1961 and NGC 6753 the observed gas temperatures, metal abundances, and electron density profiles broadly agree with those predicted by Illustris. These results hint that the physics modules of Illustris are broadly consistent with the observed properties of hot coronae around spiral galaxies. However, a shortcoming of Illustris is that massive black holes, mostly residing in giant ellipticals, give rise to powerful radio-mode AGN feedback, which results in under luminous coronae for ellipticals.Comment: 12 pages, 6 figures, accepted for publication in Ap

    Proteome analysis of the HIV-1 Gag interactome

    Get PDF
    AbstractHuman immunodeficiency virus Gag drives assembly of virions in infected cells and interacts with host factors which facilitate or restrict viral replication. Although several Gag-binding proteins have been characterized, understanding of virus–host interactions remains incomplete. In a series of six affinity purification screens, we have identified protein candidates for interaction with HIV-1 Gag. Proteins previously found in virions or identified in siRNA screens for host factors influencing HIV-1 replication were recovered. Helicases, translation factors, cytoskeletal and motor proteins, factors involved in RNA degradation and RNA interference were enriched in the interaction data. Cellular networks of cytoskeleton, SR proteins and tRNA synthetases were identified. Most prominently, components of cytoplasmic RNA transport granules were co-purified with Gag. This study provides a survey of known Gag–host interactions and identifies novel Gag binding candidates. These factors are associated with distinct molecular functions and cellular pathways relevant in host–pathogen interactions

    Multiple generations of grain aggregation in different environments preceded solar system body formation

    Get PDF
    Manuscript submitted to Proceedings of the National Academy of ScienceThe solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous (a-) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a-silicate grains called GEMS, believed to be carbon-free. Some have detectable isotopically anomalous a-silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1300K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a-silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ~450K, GEMS cannot have accreted in the hot solar nebula and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds.Portions of this work were performed at the Molecular Foundry and the Advanced Light Source at Lawrence Berkeley National Laboratory, which are supported by the Office of Science, Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. HAI acknowledges funding by NASA’s Laboratory Analysis of Returned Samples and Emerging Worlds Programs (NNX14AH86G and NNX16AK41G). JPB acknowledges funding by NASA’s Cosmochemistry Program (NNX14AI39G). CF acknowledges funding by NASA’s Cosmochemistry Program (NNX14AG25G)

    Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots

    Get PDF
    Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots

    International Guillain-Barré Syndrome Outcome Study (IGOS): protocol of a prospective observational cohort study on clinical and biological predictors of disease course and outcome in Guillain-Barré syndrome

    Get PDF
    Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy with a highly variable clinical presentation, course, and outcome. The factors that determine the clinical variation of GBS are poorly understood which complicates the care and treatment of individual patients. The protocol of the ongoing International GBS Outcome Study (IGOS), a prospective, observational, multi-centre cohort study that aims to identify the clinical and biological determinants and predictors of disease onset, subtype, course and outcome of GBS is presented here. Patients fulfilling the diagnostic criteria for GBS, regardless of age, disease severity, variant forms, or treatment, can participate if included within two weeks after onset of weakness. Information about demography, preceding infections, clinical features, diagnostic findings, treatment, course and outcome is collected. In addition, cerebrospinal fluid and serial blood samples for serum and DNA is collected at standard time points. The original aim was to include at least 1000 patients with a follow-up of 1-3 years. Data are collected via a web-based data entry system and stored anonymously. IGOS started in May 2012 and by January 2017 included more than 1400 participants from 143 active centres in 19 countries across 5 continents. The IGOS data/biobank is available for research projects conducted by expertise groups focusing on specific topics including epidemiology, diagnostic criteria, clinimetrics, electrophysiology, antecedent events, antibodies, genetics, prognostic modelling, treatment effects and long-term outcome of GBS. The IGOS will help to standardize the international collection of data and biosamples for future research of GBS. ClinicalTrials.gov Identifier: NCT01582763

    Separation of atomic and molecular ions by ion mobility with an RF carpet

    Get PDF
    Gas-filled stopping cells are used at accelerator laboratories for the thermalization of high-energy radioactive ion beams. Common challenges of many stopping cells are a high molecular background of extracted ions and limitations of extraction efficiency due to space-charge effects. At the FRS Ion Catcher at GSI, a new technique for removal of ionized molecules prior to their extraction out of the stopping cell has been developed. This technique utilizes the RF carpet for the separation of atomic ions from molecular contaminant ions through their difference in ion mobility. Results from the successful implementation and test during an experiment with a 600~MeV/u 124^{124}Xe primary beam are presented. Suppression of molecular contaminants by three orders of magnitude has been demonstrated. Essentially background-free measurement conditions with less than 1 %1~\% of background events within a mass-to-charge range of 25 u/e have been achieved. The technique can also be used to reduce the space-charge effects at the extraction nozzle and in the downstream beamline, thus ensuring high efficiency of ion transport and highly-accurate measurements under space-charge-free conditions.Comment: 8 pages, 4 figure

    A call for action to establish a research agenda for building a future health workforce in Europe

    Get PDF
    This Call for Action is closely linked to the European Public Health Association (EUPHA) and its new section ‘Health Workforce Research’. The idea was first developed during a pre-conference and two workshops at the EUPHA Conference in November 2016 in Vienna and further investigated at the EUPHA Conference in November 2017. We wish to thank all participants for inspiring discussions and for sharing ideas and knowledge.Peer reviewedPublisher PD
    corecore