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a b s t r a c t

Human immunodeficiency virus Gag drives assembly of virions in infected cells and interacts with host
factors which facilitate or restrict viral replication. Although several Gag-binding proteins have been
characterized, understanding of virus–host interactions remains incomplete. In a series of six affinity
purification screens, we have identified protein candidates for interaction with HIV-1 Gag. Proteins
previously found in virions or identified in siRNA screens for host factors influencing HIV-1 replication
were recovered. Helicases, translation factors, cytoskeletal and motor proteins, factors involved in RNA
degradation and RNA interference were enriched in the interaction data. Cellular networks of
cytoskeleton, SR proteins and tRNA synthetases were identified. Most prominently, components of
cytoplasmic RNA transport granules were co-purified with Gag. This study provides a survey of known
Gag–host interactions and identifies novel Gag binding candidates. These factors are associated with
distinct molecular functions and cellular pathways relevant in host–pathogen interactions.

& 2014 Elsevier Inc. All rights reserved.

Introduction

Human immunodeficiency virus type 1 (HIV-1) Gag is the key
structural protein mediating assembly of virions in infected cells.
In the late phase of the HIV-1 replication cycle, the Gag poly-
protein is translated on polysomes in the cytoplasm and is
targeted to the plasma membrane, the site of Gag multimerization,
assembly and budding of virions. During or shortly after budding,
the Pr55Gag polyprotein is cleaved by the viral protease, yielding
the products matrix (MA, p17), capsid (CA, p24), nucleocapsid (NC)
and p6. Specific functions during assembly have been ascribed to
distinct domains within Gag, such as the membrane binding
domain within MA, the interaction domain in CA and NC which
mediates Gag multimerization and the p6 late domain which
promotes viral budding. Zinc finger motifs and basic residues in
NC are mainly responsible for encapsidation of viral RNA

(Sundquist and Kräusslich, 2012 for review). Though Gag is
capable of self-assembly in vitro, it has become generally accepted
that within the context of a living cell, host factors play a decisive
role for efficient viral replication. Several host factors that associ-
ate with Gag have been identified previously. For instance, HIV-1
Gag p6 interacts with Tsg101 to recruit ESCRT (endosomal sorting
complex required for transport) proteins essential for budding
(McCullough et al., 2013). The cellular protein Staufen1 has been
reported to be involved in Gag multimerization (Châtel-Chaix
et al., 2008). Likewise, inhibitory factors such as Trim5alpha
(Stremlau et al., 2004, 2006) and APOBEC3G (Cen et al., 2004;
Schäfer et al., 2004; Zennou et al., 2004) interact with Gag to
restrict viral replication.

Recently, a meta-analysis of host cell genes linked to HIV replica-
tion has been published (Bushman et al., 2009). For most of these
factors, the mechanism by which they promote or restrict HIV
replication remains to be resolved. Interaction with viral proteins is
one possibility, and screens for interaction partners of HIV proteins
have been performed (Gautier et al., 2009; Bushman et al., 2009;
Studamire and Goff, 2008; Jäger et al., 2012). However, despite the
progress made in recent years, our understanding of Gag trafficking
and assembly remains incomplete. Thus, the search for unknown
Gag–host interactions may still provide valuable insights.

Here we report results of a series of affinity purification screens
identifying potential novel interaction partners of HIV-1 Gag and
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discuss these in the context of previous studies. After describing
the experimental approach and primary data analysis, we relate
the screening results to the current literature and finally provide
an integrative overview of protein classes and networks discov-
ered in the Gag interaction data. Rather than focusing on
functional characterization of individual factors, we consider the
HIV-1 Gag interactome as a whole and highlight pathways and
networks relevant for HIV-1 replication.

Results and discussion

AP/MS screens for cellular proteins interacting with HIV-1 Gag

A variety of affinity purification (AP) methods have been
developed to identify protein–protein interactions. To increase
the chance of identifying bona fide interaction partners, two
approaches are conceivable: (1) performing multiple AP experi-
ments with one method, (2) performing analogous experiments
applying several methods. While candidates selected with the first
approach are reproducible in a specific experimental setting,
candidates identified with different methods may more likely be
valid interaction partners. Thus, we chose the second approach
and performed a series of six independent screens with three AP
methods in 293T cells (Table 1 and Supplementary Table 1). Cells
were transfected with plasmids encoding tagged HIV-1 Gag. A
tagging approach was used since multimeric Gag assemblies are
not well precipitated by many Gag-specific antisera and detecting
a heterologous tag avoids masking of binding sites by antibodies
against the target protein. Three methods were employed to
identify cellular interaction partners of HIV-1 Gag: paramagnetic

anti-GFP microbeads (Beads) (Cristea et al., 2005), nanotrapping
with GFP Trap_A (Nano) (Rothbauer et al., 2008) and tandem
affinity purification (TAP) (Rigaut et al., 1999; Gingras et al., 2005).
Two alternative baits were purified with the GFP-based techni-
ques: Gag-EGFP with a C-terminal GFP tag (C) (Hermida-
Matsumoto and Resh, 2000) and pCHIVEGFP (Müller et al., 2004),
with insertion of the GFP tag between the MA and CA domains of
Gag (MA) in the context of an almost complete HIV-1 genome. This
was done because differences in conformation or domain mobility
due to the position of the tag may affect interactions with host
proteins, and because the presence of additional HIV-1 proteins
besides Gag may influence the Gag interactome. To obtain quanti-
tative mass spectrometry (MS) data, stable isotope labeling in cell
culture (SILAC) (Ong et al., 2002; Vermeulen et al., 2008) was
applied in one screen with anti-GFP microbeads for affinity
purification after transfection of pCHIVEGFP.

Data extraction and annotation of potential artifacts

Data from all screens including annotations are shown in
Supplementary Table 1. In total, 1804 potential Gag interaction
partners were identified across all screens. Pseudogenes were not
considered as candidates. For the non-quantitative AP/MS screens,
proteins identified by at least three peptides and not present in the
negative controls were considered significant. For SILAC, proteins
for which at least three peptides were detected and which
achieved a heavy/light (H/L) ratio greater than 5 (see below) were
considered to be significant hits. 895 candidates (46%) met these
significance criteria.

AP screens are prone to false positive results due to non-specific
binding of abundant and "sticky" proteins. Likewise, false negatives
may result from non-specific binding of a veritable interaction partner
to the affinity tag. Potential AP artifacts were annotated using
published lists of known common contaminants (e.g. trypsin, keratins)
and non-specifically binding proteins (Table 2 and Supplementary
Table 2). Overall, 623 (34%) of the 1804 candidate proteins were
considered to be potential artifacts. Potential artifact classes common
to all screens were ribosomal proteins, DEAD/H-Box proteins, ribonu-
cleoproteins and translation-associated proteins, although there is
some variability in the proportions (Supplementary Fig. 1). Recently,
Jäger et al. performed a large-scale AP/MS study for human proteins
interacting with HIV proteins and developed a scoring system to
distinguish specific and non-specific binders. Jäger et al. also reported
many RNA helicases, DEAD/H-box proteins, splicing factors and
ribosomal proteins which co-purified non-specifically with Gag and
Gag processing products (Jäger et al., 2012). However, the DEAD/H box

Table 1
AP/MS screens for cellular interaction partners of HIV-1 Gag. Six different AP/MS
screens were performed to identify potential cellular interaction partners of HIV-1
Gag. Name of the screen, affinity purification method, bait, negative control bait
and total number of hits (potential Gag- interacting proteins) in the respective
screen are given in the table.

AP/MS screens

Screen AP method Bait Control Hits

BeadsC Anti-GFP microbeads pGag-EGFP pEGFPc1 224
BeadsMA Anti-GFP microbeads pCHIVEGFP pEGFPc1 285
NanoC GFP Trap_A pGag-EGFP pEGFPc1 519
NanoMA GFP Trap_A pCHIVEGFP pEGFPc1 396
CTAP Tandem affinity purification pGagCTAP pGagCTAP 714
SILAC Anti-GFP microbeads pCHIVEGFP pEGFPc1 914

Table 2
Criteria for artifact filtering. Potential AP/MS artifacts were annotated using the criteria listed in the table. Lists of PANTHER families, GO terms and HGNC gene names can be
found in Supplementary Table 2.

Artifact annotation

Class Artifacts Extracted from

Pseudogenes Database alignment artifact NCBI gene database
Contaminants E.g. trypsin, bovine serum albumin, keratins MaxQuant (Cox and Mann, 2008)
Abundant and “sticky” cellular proteins Ribosomal proteins PANTHER families (Thomas et al., 2003)

Translation factors GO terms (Ashburner et al., 2000)
Heatshock proteins HGNC (Eyre et al., 2006)
Ribonucleoproteins
Histones
DEAD/H box helicases
Intermediate filaments
Cytoskeletal and motility proteins

Additional common AP artifacts E.g. proteins binding to affinity matrices cRAP, (Trinkle-Mulcahy et al., 2008; Max Planck
Institute of Biochemistry,)
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proteins RNA helicase A (DHX9) (Roy et al., 2006) and DDX49 (Jäger
et al., 2012) seem to interact with Gag in a specific manner indicating
that this annotation as potential artifacts may not always hold true.
Similarly, cytoskeletal proteins are often considered as artifacts, but
previous reports have suggested that Gag may specifically interact
with actin and actin-binding proteins (Liu et al., 1999; Wilk et al.,
1999).

SILAC-based quantitative mass spectrometry has been devel-
oped as a tool to discriminate between specific and non-specific
protein–protein interactions (Ong et al., 2002; Vermeulen et al.,
2008). This method is based on labeling cells expressing the
protein of interest and parallel control cells with different amino
acid isotopes (heavy (H) and light (L)). Quantifying the H/L ratio of
factors co-purifying with the bait allows for relative quantification
of recovered proteins, with high H/L ratios indicating a possible
specific interaction. For the SILAC experiment, 293T cells labeled
with heavy amino acid isotopes were transfected with pCHIVEGFP,
whereas control cells maintained in mediumwith light amino acid
isotopes were transfected with pEGFPc1. Non-specific binding
should occur roughly equally in the heavy and light fractions
leading to a ratio near 1. However, increased non-specific binding
to the larger Gag bait compared to controls may occur: for
instance, Gag-EGFP, a �92 kDa protein, provides a far greater
contact surface than the EGFP control of 27 kDa. The distribution
of H/L ratios for all SILAC hits for non-artifacts, potential artifacts
and contaminants is shown in Supplementary Fig. 2. In addition a
histogram of the log-transformed H/L ratios is shown in Supple-
mentary Fig. 3. The SILAC data were further analyzed using an
empirical Bayes approach. With the Bayesian Information Criter-
ion, a Gaussian mixture model with three components with
unequal variance, corresponding to the null model (no regulation),
low ratio group (downregulation), and high ratio group (upregula-
tion) was selected as the best model. This model suggested an H/L
ratio cutoff of around 4.34 (untransformed) to achieve a 1%
significance level using the unregulated class distribution as null
model. To reduce the number of false positives, the H/L ratio cutoff
was set to 5 in the present analysis. While most contaminants are
eliminated using an H/L threshold of 5, some putative artifacts are
distributed throughout the range, most of which are ribosomal
proteins.

Pr55Gag is considered to be a cytoplasmic and membrane-
associated protein. Nuclear and mitochondrial proteins identified
in the screens may thus be false positives that could have been
brought into proximity of the Gag bait during cell lysis. However,
annotation of protein localization may be incomplete. Moreover, a
main nuclear protein may be present in the cytoplasm, though at
lower abundance. Therefore, non-cytoplasmic and non-membrane
proteins were not excluded from the candidate list.

Interaction candidates identified in multiple screens and by H/L ratios
exceeding 5

Candidates identified in multiple screens appear most suited
for downstream validation experiments. Ninety proteins were
significant hits in at least three screens (Supplementary Table 1).
The cellular protein Lyric (synonyms MTDH metadherin, AEG-1
astrocyte elevated gene 1) was identified in all six screens,
significant in five screens, not annotated as a potential artifact
and achieved a high H/L ratio of 50.2. Thus, Lyric was chosen for
further characterization (Engeland et al., 2011). Several previously
described Gag-interacting proteins were also identified by this
method, e.g. Staufen (STAU1) (Mouland, 2000; Châtel-Chaix et al.,
2004, 2008). On the other hand, some potential artifacts were
retained despite these more stringent criteria.

In total, 371 of the 914 initial SILAC hits were not classified
as artifacts and achieved H/L ratios above the threshold of 5.

The top 51 candidates with H/L ratios of greater than 10 are listed
in Table 3 including functional annotation. Proteins involved in
RNA transport and processing, the tRNA synthetase complex,
several cytoskeletal proteins and also factors involved in the host
antiviral response were most prominent among the top SILAC hits.

Host factors reported previously
For an integrative analysis of the available data, interaction

candidates identified in multiple screens and/or achieving high
H/L ratios in SILAC were related to results from previous studies.
These included host factors detected in protein interaction screens,
proteins identified as part of the virion proteome or implicated in
HIV replication through siRNA screens.

Gag-interacting proteins: A number of cellular proteins inter-
acting with HIV Gag and/or Gag processing products have been
reported previously. The NIAID HIV protein interaction database
catalogs interactions between HIV-1 and human proteins pub-
lished in the literature (Fu et al., 2009; Ptak et al., 2008; Pinney
et al., 2009). Interactions described in the NIAID dataset are very
diverse and range from highly characterized and specific molecu-
lar binding data to associations such as colocalization or depen-
dency or regulatory relationships. We reviewed the associated
literature to retrieve validated direct protein–protein interactions
between HIV-1 Gag or its processing products and host cell factors.
Also we searched the literature for additional direct HIV Gag
interactors not listed in the NIAID database. 19 out of 29 Pr55Gag

interactors (65%) and 30 out of 51 interactors with Gag processing
product (59%) found in the literature were recovered in our AP/MS
screens (see Supplementary Table 1). We cannot rule out that
some interaction partners of processed Gag proteins would not
interact with the Gag baits in our experiments, but the similar
proportion of previously reported proteins for Gag and its cleavage
products suggests that this does not play a major role.

The previously reported Gag interaction partners DHX9 (DEAH
box polypeptide 9, synonym RNA helicase A) (Roy et al., 2006), NCL
(nucleolin) (Nisole et al., 2002; Ueno et al., 2004), IGF2BP1 (Zhou
et al., 2008b) and STAU1 (Staufen1) (Mouland, 2000; Châtel-Chaix
et al., 2004, 2008), were significant in multiple screens. NCL,
STAU1, KARS (Javanbakht et al., 2003), MOV10 (Abudu et al.,
2012), HNRNPD (Lund et al., 2012), DDX49, EEF1E1, EIF2AK2,
MRPL11, AIMP1, and AIMP2 (Jäger et al., 2012) achieved high H/L

Table 3
Candidates with high H/L ratios in SILAC. Significant HIV Gag interaction candidates
not considered to be potential artifacts which achieved an H/L ratio of 410 in the
SILAC screen are classified below. Functional categories include RNP complexes,
RNA interference (RNAi), RNA degradation by nucleases, members of the tRNA
synthetase complex, cytoskeletal proteins, factors involved in the antiviral
response, host restriction factors and proteins with other or unknown biological
functions. Several candidates belong to more than one category.

Candidates with H/L ratios 410 in SILAC

RNP
complexes

RNAi Nucleases tRNA Cytoskeleton Antiviral Other

STAU1 Lin28B ZC3HAV1 KARS MAP4 ZC3HAV1 MTDH
(Lyric)

SND1 DICER EXOSC10 MARS MYL6 MOV10 ZCCHC3
IGF2BP1 SND1 XRN2 AIMP1 MYH10 HERC5 BAT2L2
IGF2BP2 MOV10 EPRS MYH9 PRKRA ATXN2L
IGF2BP3 IARS NKRF NAT10
MOV10 DARS ILF2 MYBBP1A
ILF2 RARS ILF3 LARP1
ILF3 NSUN2 SRP14
LSM12 LARS SPATA5L1
ZFR QARS CHMP4B
FXR1 TRM1L

AIMP2
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ratios of over 20 in SILAC. In total, roughly 60% of all cellular
proteins which have been reported to directly interact with Gag or
Gag processing products were recovered in our screens.

Proteins observed in HIV-1 virions: Pr160GagPol was the only
other HIV-1 protein besides Gag detected in our MA EGFP Gag
screens. The HIV-1 protein Vpr was previously shown to be
incorporated into HIV-1 by interaction with the Gag p6 domain
(Selig et al., 1999), but was not detected in our screen. This
observation confirms previous results that bona fide interaction
partners may be missed in unbiased interaction screens (Jäger
et al., 2012; Roy et al., 2006). Purified virions derived from T cells,
monocytes, macrophages and 293T cells have been characterized
previously regarding content of cellular proteins (Chertova et al.,
2006; Santos et al., 2012). The results of these studies are
documented in the NCI Host proteins in HIV database (NCI
Frederick). Host proteins associating with Gag during assembly
may differ depending on cell type. It should be noted, however,
that host cell proteins may be incorporated into virions specifically
through a direct interaction with an HIV protein or non-
specifically as bystanders (since virions must contain components
of the membrane and cytosol). Supplementary Table 1 shows 158
proteins identified in the six screens, which had been detected
previously in the virion proteome. Many of these are considered as
possible AP artifacts and it is not unlikely that abundant cellular
proteins, such as heat shock or cytoskeletal proteins, are both non-
specifically co-purified in AP experiments and incorporated into
nascent viral particles. MOV10, SND1, STAU1 and SRP14 were
identified in multiple screens, achieved high H/L ratios and are
not considered as common AP artifacts, suggesting that an inter-
action with Gag may lead to incorporation of these host cell
proteins into the viral particle.

Host factors identified in siRNA screens: Recently, several siRNA
screening results for host factors influencing HIV replication were
published (Brass et al., 2008; Kon̈ig et al., 2008; Zhou et al., 2008a).
Another siRNA screen identifying cellular factors involved in the
early phase of HIV infection was performed by our group (Börner
et al., 2010; Börner and Kräusslich, unpublished data). Identifica-
tion of candidates in AP/MS and siRNA screens may suggest a
mechanism involving Gag–protein interaction. However, apart
from the two-part assay carried out by Brass et al. (2008), siRNA
screening read-outs mainly addressed the early stages of HIV
replication, whereas high levels of Gag are reached at a late stage
of the viral replication cycle. Therefore, we did not expect a high
overlap between the AP and siRNA screens. Of course, a cellular
protein may influence HIV replication at multiple stages. Supple-
mentary Table 1 lists 158 siRNA hits also identified in the AP
screens. RBM14, SND1 and SRSF3 were identified in Z3 AP
screens. The possible biological relevance indicated by the siRNA
data may warrant further investigation of these host factors.

Molecular functions, cellular pathways and interaction networks

We analyzed the complete dataset of 1804 candidates with
the DAVID Functional Annotation Tool (Huang et al., 2009a,b) to
reveal enrichment of conserved protein domains and factors
associated with distinct biological processes, molecular func-
tions and cellular compartments (Tables 4 and 5). To identify
validated protein complexes and networks within the screening
data, we extracted validated protein–protein interactions from
STRING (Franceschini et al., 2013) and subsequently searched for
clusters within the interaction data using the MCODE algorithm
(Bader and Hogue, 2003). Apart from a cluster of ribosomal
proteins, the three major clusters identified were (1) SR family
proteins with their interaction partners, (2) a complex of
centrosomal and microtubule-associated proteins and (3) the
tRNA synthetase complex (Fig. 1).

In the following we will discuss protein classes, cellular path-
ways and networks found in the AP/MS dataset and relate our
findings to previous studies on HIV-host cell interactions.

Helicases: Helicases were abundant among the screening can-
didates. Though often considered as AP artifacts, several helicases
were significant in the AP/MS screens which have been associated
with HIV previously: DHX9 has been reported to bind Gag (Roy
et al., 2006) and may induce conformational changes in viral RNA
(Xing et al., 2011). It has been suggested that DDX24 plays a role in
packaging of viral RNA (Ma et al., 2008). After depletion of DDX6,
infectious progeny particles were reduced (Reed et al., 2012). The
helicase MOV10 has been shown to interact with Gag NC in an
RNA-dependent manner (Abudu et al., 2012). MOV10 was also
identified in our siRNA screen (Börner and Kräusslich, unpublished
data). MOV10 has been characterized as a viral restriction factor
which inhibits reverse transcription, reduces Gag protein levels
and processing as well as virion production (Wang et al., 2010;
Burdick et al., 2010; Furtak et al., 2010).

Table 4
Protein domains enriched in the HIV Gag AP/MS data. Protein domains enriched in
the HIV Gag interaction dataset categorized according to their molecular functions
are listed in the table.

Protein domains enriched in HIV Gag AP/MS data

Function Protein domains

RNA/DNA binding RNP-1
Helicase motifs
Histone core
dsRNA binding domain
KH domain

Protein–protein interaction WD40 repeats
Protein complex assembly AAA ATPase
Cytoskeletal proteins Tubulin
Intracellular transport Intermediate filament motifs

Myosin head
Tropomyosin
Actin conserved sites

Specific molecular functions Helicase function
Chaperone motifs
Exosome proteins (exoribonuclease complex)
tRNA synthetases

Table 5
GO enrichment analysis of AP/MS hits. Gene ontology terms were used for
annotation of AP/MS hits. The table lists the most enriched biological processes,
molecular functions and cellular compartments.

GO enrichment analysis of AP/MS hits

GO biological processes GO molecular
functions

GO cellular
compartments

Translation elongation RNA binding Ribonucleoprotein
complex

RNA processing Constituent of
ribosome

Ribosome

RNP complex biogenesis Nucleic acid binding Cytosolic part
Ribosome biogenesis Helicase activity Nucleolus
RNA splicing ATPase activity Nuclear lumen
ncRNA metabolic process DNA clamp loader

activity
Protein–DNA complex

Nucleosome assembly Motor activity Spliceosome
Microtubule-based process Translation factor

activity
Chromosome

RNA stabilization actin binding hnRNP complex
tRNA metabolic process tRNA ligase activity Cytoskeleton
Actin filament based

movement
Centrosome

Microtubule-based process Myosin complex
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Cytoskeletal and motor proteins: A number of cytoskeletal
proteins were identified in the AP/MS screens. Actin and actin-
binding proteins were abundant among the AP/MS hits. However,
most of these were not significant, with the exception of myosins
in the TAP screen and tropomyosins in SILAC. Tubulins were
present in negative controls and achieved low H/L ratios (o1).
Centrosomal proteins, microtubule-associated proteins MAP1B
and MAP4, dynein, kinesin and the kinesin-binding protein

kinectin scored significantly in the TAP and SILAC screens. Cluster
analysis identified a complex of centrosomal proteins, gamma
tubulins and kinesin among the significant Gag interaction candi-
dates (Fig. 1a).

Interactions of Gag with cytoskeletal proteins and motor
proteins in the late stages of the HIV replication cycle have been
reported previously (reviewed in Fackler and Kräusslich, 2006;
Naghavi and Goff, 2007; Stolp and Fackler, 2011). Poole et al.
reported that Gag interacts with centrioles and captures viral RNA
near the MTOC (Poole et al., 2005). Previous studies have sug-
gested association of Gag with actin (Liu et al., 1999; Wilk et al.,
1999) and the microtubule motor protein KIF4A (Tang et al., 1999;
Martinez et al., 2008). An interaction of filamin with Gag has been
reported which may be involved in particle release (Cooper et al.,
2011). Jolly et al. reported that actin and tubulin were required for
assembly of HIV in T cells (Jolly et al., 2007). Gladnikoff et al.
observed actin remodeling during assembly and budding
(Gladnikoff et al., 2009). Altogether, how Gag interacts with the
cytoskeleton during trafficking and assembly remains to be
resolved in detail.

Chaperones and protein folding: Several molecular chaperones
were found in the AP screens. The chaperonin-containing T
complex TriC consisting of TCP1 and CCT2-8 as well as the heat
shock proteins Hsp40, 60, 70 and 90 were identified. However,
chaperones often co-purify non-specifically in AP experiments and
were thus present in negative controls and achieved low H/L ratios
in SILAC.

On the other hand, some proteins that are bona fide Gag
interactors were not identified. This was the case for Cyclophilin
A (PPIA), which was not significant in our screens and also did not
achieve a significant score in the analysis by Jäger et al. (Jäger et al.,
2012). Interaction of Gag with Cyclophilin A has previously been
characterized in detail (Luban et al., 1993; Franke et al., 1994; Thali
et al., 1994; Colgan et al., 1996).

Interaction of HIV Gag p6 and the Gag protein of the Mason-
Pfizer monkey retrovirus with TCP-1gamma has been reported
and this interaction may contribute to retroviral assembly (Hong
et al., 2001). Gurer et al. reported binding of Gag to Hsp60 and
Hsp70 (Gurer et al., 2002). HP68 has also been implicated in HIV
assembly (Lingappa et al., 2006). Joshi et al. reported that
HSP90AB1 can rescue infectivity of HIV CA mutants and suggested
that this chaperone may stabilize the HIV viral core (Joshi and
Stoddart, 2011; Joshi et al., 2013).

Proteins containing WD40 repeats and AAA ATPase domains
were overrepresented in our interaction data. These domains are
known to assist protein folding and protein complex assembly. The
distinct role of many of these factors remains poorly defined.
Further studies are needed to address whether these proteins
specifically assist HIV assembly.

Cellular HIV restriction factors: TRIM2, 6, 21, 25, 28, 34 and 68
were found in our AP/MS screens. TRIM5alpha is an HIV restriction
factor which binds the incoming viral capsid (Stremlau et al., 2004,
2006). Aside from TRIM5alpha, binding of TRIM6, TRIM21 and
TRIM34 to Gag has been reported (Li et al., 2006). These three
TRIM proteins were identified in our screens, but achieved low
scores. Jäger et al. found TRIM25 to be associated with Gag and
TRIM26 with NC, though both did not achieve significant scores
(Jäger et al., 2012).

The cytidine deaminase APOBEC3G is known to bind Gag and –

in the absence of Vif – restrict HIV replication by inhibiting reverse
transcription and inducing G-to-A mutations (reviewed in Goila-
Gaur and Strebel, 2008). A recent study reports that not only
APOBEC3G, but also APOBEC3D, -F and -H restrict HIV replication
(Hultquist et al., 2011). APOBEC3G was not identified in any of our
screens, independent of the presence or absence of Vif. However,
APOBEC3D was identified in one screen (NanoC). In all screens

Fig. 1. Molecular clusters in the HIV Gag AP/MS data. Clusters identified by
protein–protein interaction and subsequent MCODE analysis. Blue nodes: AP/MS
hits; yellow nodes: proteins identified in HIV particles; red border: impaired viral
replication after siRNA knockdown; green border: siRNA knockdown enhanced HIV
replication in siRNA screens. (a) A cellular complex of centrosomal proteins, gamma
tubulins and kinesin; (b) the tRNA synthetase complex; (c) the SR protein family.
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using the plasmid pCHIVEGFP as a bait, expression of Vif probably
led to degradation of APOBEC.

Vesicular trafficking, membrane proteins: The clathrin adaptor–
protein complex subunits AP2A1, AP2A2, AP2B1, AP2M1, AP3B1,
AP3D1, and AP3M1 were identified in SILAC, but did not achieve
significant H/L ratios. AP1mu has been implicated in HIV-1
budding previously (Camus et al., 2007). Dong et al. reported an
interaction between Gag and the adaptor protein complex AP-
3delta, suggesting a requirement of AP-3 for Gag targeting to late
endosomes and MVBs early in HIV assembly (Dong et al., 2005).

Tsg101, which recruits the ESCRT complex necessary for HIV
budding (McCullough et al., 2013), was not identified in any of the
AP/MS screens. CHMP4B was the only ESCRT component identified
in the AP/MS screens and achieved a high H/L ratio of 10.9.
CHMP4B interacts with Alix and is necessary for Alix-mediated
rescue of HIV late domain mutants (Usami et al., 2007). Conver-
sely, overexpression of CHMP4B inhibits HIV-1 release (Carlton et
al., 2008). Jäger et al. also did not detect Tsg101 and Alix and
presumed that these interactions may be too weak for detection in
their AP/MS approach (Jäger et al., 2012). Moreover, membrane-
associated proteins tend to be undersampled in AP experiments
with cell lysates.

The Gag matrix domain interacts with phosphatidylinositol-
4,5-bisphosphate, thus targeting Gag to the plasma membrane
(reviewed in Chukkapalli and Ono, 2011). More specifically, asso-
ciation of Gag with lipid rafts and tetraspanin-rich domains has
been studied (for review, see Ono, 2010). However, raft proteins or
tetraspanins were not recovered in our screening data. Lipid-
mediated interactions may not be detected by AP of tagged
proteins. Thus, proteins which associate with Gag at membranes
or proteins involved in vesicular trafficking may not be identified
with our experimental approach.

Ubiquitin, proteasome: HIV Gag ubiquitinylation has been stu-
died in detail (reviewed in Martin-Serrano, 2007). In our Gag
interaction screens, ubiquitin was identified in SILAC with an H/L
ratio of 3.9. Several ubiquitin ligases (UBE2E1, UBE2G1 and UBE20)
were significant in the TAP screen. However, other members of the
ubiquitin/proteasome pathway previously implicated in HIV repli-
cation (meta-analysis in Bushman et al., 2009) were not identified.

Autophagy: Kyei et al. described colocalization and co-
immunoprecipitation of the autophagy factor LC3 with Gag (Kyei
et al., 2009). It has been suggested that early phases of autophagy
assist virion formation in host cells (reviewed in Dinkins et al.,
2010). LC3 (MAP1LC3A) was not recovered in our screens, only the
autophagy factors ATG3 and ATG16L2 were significant in one
screen.

Translation factors: Cellular factors involved in RNA translation
were overrepresented in the AP/MS data and complexes of
translation factors such as the EIF3 complex were identified.
Though many translation factors were not considered as signifi-
cant hits, EIF2S1-3 were significant in multiple screens and
achieved high H/L ratios in SILAC. Interaction of Gag with transla-
tion factors EEF1A1 (Cimarelli and Luban, 1999), EEF1E1 and
EIF2AK2 (Jäger et al., 2012) has been reported previously. The
interaction between EEF1A1 and Gag MA inhibits translation
in vitro, and a model in which accumulating Gag inhibits transla-
tion to favor packaging of viral RNA has been suggested (Cimarelli
and Luban, 1999).

tRNA synthetase complex: The tRNA synthetase complex which
was identified as one of the main clusters in the AP/MS data is
shown in Fig. 1b. Aspartyl tRNA synthetase (DARS) was significant
in four screens. Members of the tRNA synthetase complex were
the largest group with high H/L ratios in SILAC. The recent HIV
protein interaction study by Jäger et al. also identified tRNA
synthetases as binding partners of Gag and specifically its matrix
domain (Jäger et al., 2012).

HIV uses tRNALys as a primer for reverse transcription and Gag
mediates incorporation of tRNALys into virions via an interaction
with lysyl tRNA synthetase (KARS) (reviewed in Kleiman et al.,
2010). In a recent study, tRNAIle and other tRNAs were detected in
virions, leading to the hypothesis that HIV selectively packages
tRNAs specific for rare human codons which are frequently used
by HIV, e.g. AUA for isoleucine (Pavon-Eternod et al., 2010). Thus,
interactions of Gag and tRNA synthetases aside from KARS may be
required for recruitment of additional tRNAs, e.g. IARS for incor-
poration of tRNAIle.

SR proteins: Three members of the SR protein family (SRSF3,
SRSF1 and SRSF7) were significant in multiple screens. The SR
proteins SRSF2-6, 9, 10 and 12 were also identified. The SR protein-
specific kinase SRPK1 and TOP1 were significant in multiple
screens (Supplementary Table 1). SRPK2 was significant in SILAC.
The SRSF1-interacting protein PRPF4 was identified in 5 AP/MS
screens (significant in 2 screens). Fig. 1c depicts the SR protein
network as identified by MCODE analysis of the AP/MS data.

Though first characterized as splicing factors, the serine–
arginine-rich (SR) family of proteins has multiple functions in
RNA metabolism from mRNA processing over RNA transport to
translational regulation (reviewed in Shepard and Hertel, 2009;
Zhong et al., 2009; Twyffels et al., 2011). SR proteins have been
implicated in HIV replication previously: Bennett et al. reported
interaction of HIV-2 Gag with PRPF4 which leads to inhibition of
PRPF4-mediated phosphorylation of SRSF1 (Bennett et al., 2004).
An increase of p24 CA release after overexpression of SRSF4, SRSF5
and SRF6 and after phosphorylation of SRSF4 by SRPK2 has also
been reported (Fukuhara et al., 2006). When overexpressing
SRSF1, SRSF2 and SRSF7, Jacquenet et al. observed a reduction of
Gag expression and accumulation of Gag at the plasma membrane
and in intracellular compartments (Jacquenet et al., 2005). After
overexpression of SRSF1, SRSF2 and SRSF5 a decrease in virion
production and viral infectivity was observed (Jablonski and
Caputi, 2009). Swanson et al. reported that SRSF5 and SRSF6
enhance Gag translation (Swanson et al., 2010). SRSF3 was also
significant in our siRNA screen (Börner and Kräusslich, unpub-
lished data). Taken together, interaction of HIV with SR proteins
may merit further exploration.

ncRNA/RNAi effector complex: Factors involved in RNA interfer-
ence were enriched in the AP/MS dataset (Table 5). The RISC
components DICER, Ago2 (EIF2C2) and TARBP (Chendrimada et al.,
2005) were identified in the AP/MS screens and achieved high H/L
ratios of 51.4, 8.6 and 10.0, respectively.

The RNAi pathway has been implicated in HIV replication
previously (reviewed in Klase et al., 2012). HIV mRNA has been
reported to associate with RISC components (Chable-Bessia et al.,
2009; Nathans et al., 2009). The RISC component TARBP binds the
TAR element of HIV RNA. Knockdown of TARBP impairs processing
of microRNA, but also seems to decrease HIV replication
(Christensen et al., 2007). Knockdown of the RNAi effectors Dicer
and Drosha apparently leads to an increase in HIV particle
production, while Dicer appears to inhibit HIV replication
(Chable-Bessia et al., 2009; Triboulet et al., 2007). Bouttier et al.
reported that Gag recruits Ago2 to viral RNA. This interaction did
not appear to affect RNA stability but supported HIV replication
(Bouttier et al., 2012). Previous studies as well as the AP/MS data
suggest a possible interaction of Gag with several RISC compo-
nents. The precise role of Gag in RNA interference during HIV
replication remains to be defined.

RNA degradation by nucleases: Aside from factors involved in
RNA interference, factors mediating RNA degradation by nucleases
were among the top AP/MS hits. ZC3HAV1 was among the
candidates with the highest H/L ratios in the SILAC screen.
The exosomal RNAse components EXOSC1-10 were identified in
the AP/MS screens, with EXOSC5-8 and 10 achieving high H/L
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ratios, though only EXSOC9 and 10 were considered significant.
Also the RNA exonuclease XRN2 was identified in two screens and
significant in SILAC.

In an shRNA experiment, knockdown of EXOSC5 affected Gag
trafficking (Yeung et al., 2009). Zhu et al. reported that over-
expression of ZC3HAV1 leads to degradation of HIV mRNAs by
recruiting exonucleases and decapping enzymes (Zhu et al., 2011).
Factors involved in RNA degradation may non-specifically co-
purify with Gag and viral RNA. However, Gag may also shield viral
RNA from degrading enzymes during trafficking.

RNA binding proteins, RNP complexes: By far the most prominent
group in our AP/MS screening data were RNA binding proteins,
which is similar to previous Gag interaction studies (Roy et al.,
2006; Jäger et al., 2012). Interactions detected in AP experiments
may be either direct protein–protein interactions, or may be
mediated by another factor. RNA-binding proteins such as HIV-1
Gag are expected to pull down other RNA-binding proteins
through interaction with the RNA in the complex. If specifically
searching for direct interactions, AP experiments could be per-
formed with Gag variants that do not bind RNA (Poon et al., 1996;
Cimarelli et al., 2000) or following RNAse digestion. The different

baits in our experiments are expected to interact with different
RNAs: RNA expressed from pCHIVEGFP contains the HIV-1 specific
packaging signal and is thus expected to interact with Gag. This is
not the case for RNA expressed from the GagEGFP plasmid, and
Gag in this case will bind non-specifically to cellular RNAs, which
are usually shorter than the viral genome and do not contain
potential cis-acting elements. Comparing the list of RNA-binding
proteins obtained for these two different baits, we observed
similar enrichment of RNA-associated proteins and RNA recogni-
tion motifs (Supplementary Table 3).

Previous studies have suggested that HIV-1 Gag may capture
viral RNA near the centriole (Poole et al., 2005) with intracellular
localization of HIV RNA depending on Gag (Lehmann et al., 2009).
Furthermore, the formation of an RNP transport complex consist-
ing of Gag, RNA and host cell proteins has been suggested
(Cochrane et al., 2006). Different classes of cellular ribonucleopro-
teins (RNPs) have been described, including P bodies, stress
granules (SGs), U bodies, neuronal transport RNP granules,
RNP-rich granules in germline cells, sponge bodies, TAM bodies
and cytoplasmic PrP-induced RNP granules (for review, see Moser
and Fritzler, 2010). A recent study suggested that HIV replication is

Fig. 2. Cellular ribonucleoprotein complexes. (a) Overlap of Gag interaction screening hits with defined cellular protein-RNA complexes. AP/MS gives the percentage of RNP
components recovered in the interaction screens; n.i.: not identified in the Gag AP/MS screens. (b) FMR1, IMP1 (IGF2BP1), and Staufen (STAU1)-containing ribonucleoprotein
complexes with annotation of proteins identified in virions, HIV Gag AP/MS and siRNA screening hits. Blue nodes: AP/MS hits; yellow nodes: proteins identified in HIV
particles; red border: impaired viral replication after siRNA knockdown; green border: siRNA knockdown enhanced HIV replication in siRNA screens; brown border: both
enhanced and impaired viral replication after knockdown were observed.
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independent of P body components and that Gag does not co-
localize with P bodies (Phalora et al., 2012), while previous reports
observed localization of HIV mRNAs within P bodies and enhanced
HIV replication after P body disruption (Chable-Bessia et al., 2009;
Nathans et al., 2009). The P body component MOV10 has been
shown to influence HIV replication (Burdick et al., 2010; Furtak et
al., 2010). Recruitment of DDX6 and additional P body components
by Gag to facilitate assembly has been hypothesized recently (Reed
et al., 2012). Blocking of SG formation by HIV has been reported
(Abrahamyan et al., 2010) and sequestration of HIV RNA in SG's
mediated by APOBEC3G has been suggested (Kozak et al., 2006).
The RNP component Staufen has been implicated in viral genomic
RNA encapsidation previously (Mouland, 2000; Châtel-Chaix et al.,
2004). Live-cell imaging of Staufen in HIV-infected cells has been
performed (Milev et al., 2010) and Staufen-HIV RNP granules
which neither represent stress granules nor P bodies have been
characterized (Abrahamyan et al., 2010; Milev et al., 2012).

We investigated whether constituents of distinct RNP com-
plexes were present in the Gag interaction dataset (Fig. 2a). 13 of
55 GO-listed P body components were identified. The requisite P
body component GW182 was not identified, while EIF2C2 (Ago2)
and RCK/p54 (DDX6) were detected. Proteins unique to P bodies
(DCP1/2, LSM1-7, EDC1-4, CCR4, POP2, PAN2 and MEX3A) were
not identified. of 30 GO-listed stress granule components were
identified. The SG-characteristic proteins PABPC1, 40S ribosomal
subunits, ELAVL1 (HuR), G3BP, EIF4A and G, Staufen, FMRP, FXR1
and 2, RACK1 (GNB2L1) and TRAF2 were identified, while TIA-1/R,
ZBP1, RSK2, Mex67 were not detected. The Gag interaction data
include a large proportion of proteins found in cytoplasmic RNA
granules containing FMR1 (Ohashi et al., 2002; Angenstein et al.,
2002), IGF2BP1 (Jonson et al., 2007; Weidensdorfer et al., 2009)
and Staufen (STAU1) (Brendel et al., 2004; Villace et al., 2004): of
20 FMR1-RNP components were identified, 52 of 65 STAU1-RNP
proteins and 34 of 46 IGF2BP-1 components were represented in
the AP data. 43 of the 77 Staufen RNP-associated proteins reported
by Milev et al. (2012) were recovered in our screens. We extracted
binary interactions between proteins in FMR1-, IGF2BP1- and
Staufen-RNA granules from the STRING database (Franceschini et
al., 2013) and created networks depicting these complexes with
annotation of AP/MS hits and factors implicated in HIV replication
(Fig. 2b). Taken together, our AP/MS results favor association of
Gag with RNP complexes which are distinct from P bodies and
stress granules.

Conclusions

In this report we describe results of six independent affinity
purification screens to identify potential interaction partners of
the HIV-1 structural protein Gag. 1804 candidate proteins were
identified, 90 of these were significant hits in Z3 screens. Filtering
of primary data and quantitative MS data from a SILAC screen was
used to distinguish specifically co-purifying proteins from poten-
tial AP artifacts. Recovery of previously characterized interactors
shows that the AP/MS approach is in principle suitable for the
identification of cellular proteins which interact with HIV Gag.
Proteins previously found in HIV particles were also detected,
indicating that an interaction with Gag may lead to incorporation
of these proteins. Some hits from siRNA screens were identified as
potential Gag interaction partners, although these screens primar-
ily addressed early steps of HIV replication.

Analysis of the proteins identified showed an enrichment of
distinct protein motifs and molecular pathways. A large number of
helicases, translation factors and cytoskeletal proteins co-purified
with HIV Gag. Three cellular complexes were identified in the AP/
MS experiments: the tRNA synthetase complex, a network of SR

proteins and their interaction partners as well as a complex
consisting of centrosomal proteins, gamma tubulins and kinesins.
The major proportion of screening hits were RNA binding proteins.
Factors involved in RNA degradation and RNA interference were
significant hits. Most prominently, RNP complex components were
enriched in the dataset. RNP components in the interaction data
overlapped less with P bodies and stress granules than with
Staufen-, FMR1- and IGF2BP1-containing cytoplasmic RNA trans-
port granules, suggesting that HIV may hijack RNA transport
compartments during trafficking of viral RNA. In summary, this
study provides a rich source of potential novel cellular interaction
partners of HIV Gag. Further investigations addressing the biolo-
gical function of these host cell factors may contribute to our
understanding of HIV replication.

Methods

AP/MS screens

Affinity purification using anti-GFP microbeads (Cristea et al.,
2005), GFP Trap_A (Rothbauer et al., 2008) and tandem affinity
purification (Rigaut et al., 1999; Gingras et al., 2005) with pGagC-
TAP, pGag-EGFP (Hermida-Matsumoto and Resh, 2000) and pCHI-
VEGFP (Müller et al., 2004) as baits and mass spectrometry were
performed as described in Engeland et al. (2011). For details, see
Supplementary methods.

Data extraction and filtering

Protein identifiers for all hits were extracted from Mascot
(Beads, Nano and CTAP screens) (Matrix Science Ltd., 2008) and
MaxQuant (SILAC screen) (Cox and Mann, 2008) and stored in a
relational database (PostgreSQL). Common AP artifacts as listed by
the Global Proteome Machine Organization (cRAP), the Max Planck
Institute of Biochemistry, Martinsried and by Trinkle-Mulcahy
et al. (2008) were used to annotate the screening data with filters
based on PANTHER protein family and subfamily terms (Thomas et
al., 2003), NCBI filtered GO terms (Ashburner et al., 2000) and
official protein names (Eyre et al., 2006). For a more detailed
description, see Supplementary methods.

Data analysis, annotation and protein interaction networks

Previously characterized HIV/host protein interactions from the
NIAID HIV interaction dataset (Ptak et al., 2008) were obtained
from the NCBI (data as of 2010-08-20). The dataset includes a wide
range of types of interaction data for the Gag (Pr55) polyprotein
and its processing products matrix (MA, p17), capsid (CA, p24),
nucleocapsid (NC, p7) and p6. We reviewed the associated
literature for these to identify validated direct Gag–protein inter-
actions. Proteins incorporated in virions were extracted from NCI
Frederick and Santos et al. (2012). Host factors identified in siRNA
screens were extracted from Kon̈ig et al. (2008), Brass et al. (2008),
Zhou et al. (2008a). Gene ontology annotation (Ashburner et al.,
2000) of candidates and enrichment analysis of protein domains
(Hunter et al., 2012) within the dataset was performed with the
DAVID Functional Annotation Tool (Huang et al., 2009a, 2009b).
Protein–protein interaction data were obtained from the STRING
database (Franceschini et al., 2013). Protein–protein interaction
networks were visualized using Cytoscape (Shannon et al., 2003).
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Supplementary methods

Tissue culture and DNA transfection
293T cells were grown in Dulbecco's Modified Eagle's Medium

(DMEM). For stable isotope labeling by amino acids in cell culture
(SILAC), DMEM deficient in Arg and Lys was used (Pierce SILAC
quantification kit, Thermo Fisher Scientific, Bonn, Germany) as
described in Ong et al. (2002). 293T cells were seeded at a density
of 3�106 cells per 10 cm dish 24 h prior to transfection with
Fugene (Roche Diagnostics) according to the manufacturer's
instructions. Expression of Gag-EGFP, MA-EGFP Gag and EGFP
was monitored by fluorescence microscopy.

Affinity purifications
In this study, three different affinity purification methods were

employed: purification with magnetic microbeads, GFP nanotrap
and tandem affinity purification (TAP). For the Beads screens,
purification with magnetic anti-GFP microbeads (Miltenyi Biotec,
Bergisch Gladbach, Germany) was performed using standard
methods as described previously (Engeland et al., 2011). For the
Nano screens, affinity purification with GFP Trap_A (ChromoTek,
Martinsried, Germany) was carried out as described by Rothbauer
et al. (2008). pEGFPc1 (Invitrogen, Carlsbad, CA) was used as
negative control for the microbead and nanotrap screens. The
CTAP tandem affinity purification screen was performed as
described by Gingras et al. (2005) using a Gag expression plasmid
with a C-terminal TAP tag (pGagCTAP) and the TAP tag only
(pCTAP) as negative control. For the SILAC screen, cells grown in
heavy media were transfected with pCHIVEGFP (Müller et al., 2004),
encoding MA-EGFP Gag, while cells grown in light media were
transfected with pEGFPc1 (Invitrogen). Affinity purification with
anti-GFP microbeads was performed with lysates from both cell
populations. Affinity purification samples were resolved on 12.5%
low cross-linking polyacrylamide gels. After separation, gels were
stained with Coomassie (Imperial Protein Stain, Pierce) and 2 mm
slices were excised for analysis by mass spectrometry.

Mass spectrometry
Mass spectrometry for microbeads and nanotrap screens: Gel

pieces were reduced with DTT, alkylated with iodoacetamide and
digested with trypsin (Catrein et al., 2005) using a Digest pro MS
liquid handling system (Intavis AG, Cologne, Germany). Following
digestion tryptic peptides were extracted from the gel pieces with
50% acetonitrile/0.1% TFA, concentrated nearly to dryness in a
speedVac vacuum centrifuge and diluted to a total volume of 0 μl
with 0.1% TFA. 25 μl of the sample was analyzed by a nanoHPLC
system (Dionex, Amsterdam, Netherlands) coupled to a ESI LTQ
Orbitrap mass spectrometer (Thermo Fisher). Sample was loaded
on a C18 trapping column (Inertsil, LC Packings, Amsterdam,
Netherlands) with a flow rate of 10 μl=min 0.1% TFA. Peptides
were eluted and separated on an analytical column ð75 μm�
150 mmÞ packed with Inertsil 3 μm C18 material (LC Packings)
with a flow rate of 200 nl/min in a gradient of buffer A (0.1% formic
acid) and buffer B (0.1% formic acid, acetonitrile): 0–6 min: 3% B;
6–60 min: 3–40% B; 60–65 min: 60–90% B. The column was
connected with a nano ESI emitter (New Objectives, Woburn,
MA). 1500 V were applied via liquid junction. One survey scan (res:
60,000) was followed by 5 information dependent product ion
scans in the LTQ. Only doubly and triply charged ions were
selected for fragmentation. Tandem mass spectra were extracted
by Mascot Daemon without grouping or smoothing and analyzed
using Mascot (version 2.2.04, Matrix Science Ltd., 2008). Mascot
was set up to search the International Protein Index (IPI, version
3.48) and NCBI nr (version 2008-08-20) databases, using trypsin as
protease, a fragment ion mass tolerance of 0.20 Da and a parent

ion tolerance of 4.0 ppm. Iodoacetamide derivative of cysteine was
specified in Mascot as a fixed modification. Deamidation of
asparagine, oxidation of methionine and phosphorylation of serine
and threonine were specified in Mascot as variable modifications.
Only protein hits with a probability of po0:05 for a randommatch
were listed. Mass spectrometry for TAP screen: Tryptic peptides
from Coomassie-stained proteins were prepared for mass spectro-
metry as described in Shevchenko et al. (1996). Samples were
analyzed using a Bruker Reflex III MALDI TOF instrument, and
proteins were identified using Mascot/MOWSE (version 2.1) and
the NCBI nr database (version 2007-03-02), with mass tolerance
set to 65 ppm.

Mass spectrometry for SILAC: Tryptic digestion, protein identifi-
cation and quantification was performed as recently described
(Lange et al., 2010). In brief, after tryptic in-gel digestion, the
extracted peptide solution was taken to dryness under vacuum
and samples were reconstituted in 6 μL of 0.1% (v/v) TFA, 5% (v/v)
acetonitrile in water. LC MS/MS analyses were performed on a LTQ
Orbitrap XL mass spectrometer (Thermo Scientific) equipped with
an Eksigent 2D nanoflow LC system (Axel Semrau GmbH,
Sprockhov̈el, Germany). Separations were performed on a capillary
column (Atlantis dC18, 3 μm, 100 Å, 150 mm� 75 μm i.d., Waters,
Milford, MA) at an eluent flow rate of 250 nL/min using a linear
gradient of 040% B in 50 min. Mobile phase A was 0.1% formic acid
(v/v) in water; mobile phase B was 0.1% formic acid in acetonitrile.
Mass spectra were acquired in a data-dependent mode with one
MS survey scan (with a resolution of 60,000) in the Orbitrap and
MS/MS scans of the five most intense precursor ions in the LTQ.
The MS survey range was m/z 3501500. The dynamic exclusion
time (for precursor ions) was set to 120 sec and automatic gain
control was set to 3�106 and 20,000 for Orbitrap MS and LTQ MS/
MS scans, respectively. Identification and quantification of proteins
were carried out with version 1.0.12.31 of the MaxQuant software
package (Cox and Mann, 2008). Generated peak lists (msm files)
were submitted to a Mascot search engine (version 2.2, Matrix
Science Ltd., 2008) and searched against an IPI human protein
database (version 3.52). The mass tolerance of precursor and
sequence ions was set to 7 ppm and 0.3 Da, respectively. Methio-
nine oxidation and the acrylamide modification of cysteine were
used as variable modifications. False discovery rates were o1%,
based on matches to reversed sequences in the concatenated
target decoy database. Labeling efficiency with 13C6 L-lysine and
13C6, 15N4 L-arginine was determined to be 99%.

Data extraction
Protein hits for the microbeads (BeadsC, BeadsMA), nanotrap

(NanoC, NanoMA) and negative control (GFP) screens were
obtained in the form of NCBI gi numbers and EMBL/EBI IPI
identifiers. Corresponding sequence records were fetched from
NCBI or EBI and parsed to extract the NCBI Entrez Gene taxon and
GeneID, if present. CTAP and negative control (TAP) results were
mined from the web pages generated by Mascot (Matrix Science
Ltd., 2008). Protein sequence identifiers in the form of NCBI gi
numbers, NCBI RefSeq, NCBI GenPept, PIR and UniProtKB identi-
fiers were extracted for all proteins found. All extracted identifiers
were looked up at NCBI (gi numbers, RefSeq, GenPept identifiers)
or at ExPASy (PIR, UniProtKB identifiers). For each of Beads, Nano
and CTAP, only human accessions (NCBI taxon 9606) with a
GeneID were retained. Hits were then filtered to remove proteins
with fewer than 3 peptides, as well as any hits found in the
corresponding negative control, regardless of number of peptides
in the latter. SILAC mass spectrometry data obtained using
MaxQuant were processed to extract sequence identifiers. The
corresponding taxon and GeneID were determined for each
RefSeq, UniProt and KEGG (Kanehisa and Goto, 2000) identifier
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present in each MaxQuant hit. Human proteins with a GeneID
were retained. Significant hits were selected satisfying the criteria
H/L ratio 45:0 and Z3 peptides identified. All extracted screen-
ing data were stored in a relational database (PostgreSQL) along
with a reference collection of human loci with all historical GeneID
obtained from NCBI Gene (data as of 2010-08-20). Every protein in
the screens or in published papers with an associated GeneID
could be cross referenced through the common locus and asso-
ciated with other data, such as current and obsolete HGNC (Eyre et
al., 2006) gene symbols and synonyms, pathway information, RNA
interference data and protein–protein interaction data (see Börner
et al., 2010 for more information).

Contaminant and artifact filtering
The mass spectrometry analysis software identifies and reports

proteins based on matching peptides in sequence databases. These
are predominantly machine generated translations of predicted
gene products rather than experimentally confirmed protein
sequences. Accordingly, some are actually pseudogenes and a
simple filter based on the Entrez annotation of each sequence
accession was used to exclude this kind of data processing artifact.
More problematic are contaminants and artifacts arising from the
experimental procedures. MaxQuant output for SILAC indicates
some peptide profiles as being likely due to contaminants from
material handling: mostly keratins, actins, tubulins, tropomyosins
and non-human proteins including caseins and trypsin. Additional
lists of common AP/MS contaminants were obtained from the
Global Proteome Machine Organization (cRAP) and the Max Planck
Institute of Biochemistry, Martinsried. Hits from all screens were
annotated using the combined contaminant list. A comprehensive
set of probable artifacts was constructed based upon the findings
of Trinkle-Mulcahy et al. for Protein G-conjugated Sepharose,
agarose and magnetic bead screens (Trinkle-Mulcahy et al.,
2008) yielding the following classes: cytoskeletal, structural and
motility proteins (actin, myosin, tubulin, tropomyosin, cofilin,
filamin, desmoplakin, epiplakin, plectin), intermediate filaments
(including desmin, peripherin, vimentin, keratin), DEAD/H Box
proteins, translation elongation and initiation factors, heat shock
proteins, histones, ribonucleoproteins (hnRNP), ribosomal pro-
teins. Trinkle-Mulcahy et al. also present a list of 222 additional
non-specifically binding proteins which was extracted and
assigned to a miscellaneous class. Specific filters for these classes
of protein were prepared using PANTHER protein family and
subfamily terms (version 6.1.1 as of 2009-02-09, Thomas et al.,
2003), NCBI filtered GO terms (data as of 2010-08-20, Ashburner et
al., 2000) and official protein names (Eyre et al., 2006). Hits from
all screens were then annotated using these artifact classes.
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