13 research outputs found

    Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing

    Get PDF
    Molecular markers linked to phenotypically important traits are of great interest especially when traits are difficult and/or costly to be observed. In tomato where a strong focus on resistance breeding has led to the introgression of several resistance genes, resistance traits have become important characteristics in distinctness, uniformity and stability (DUS) testing for Plant Breeders Rights (PBR) applications. Evaluation of disease traits in biological assays is not always straightforward because assays are often influenced by environmental factors, and difficulties in scoring exist. In this study, we describe the development and/or evaluation of molecular marker assays for the Verticillium genes Ve1 and Ve2, the tomato mosaic virusTm1 (linked marker), the tomato mosaic virus Tm2 and Tm22 genes, the Meloidogyne incognita Mi1-2 gene, the Fusarium I (linked marker) and I2 loci, which are obligatory traits in PBR testing. The marker assays were evaluated for their robustness in a ring test and then evaluated in a set of varieties. Although in general, results between biological assays and marker assays gave highly correlated results, marker assays showed an advantage over biological tests in that the results were clearer, i.e., homozygote/heterozygote presence of the resistance gene can be detected and heterogeneity in seed lots can be identified readily. Within the UPOV framework for granting of PBR, the markers have the potential to fulfil the requirements needed for implementation in DUS testing of candidate varieties and could complement or may be an alternative to the pathogenesis tests that are carried out at present

    Genomic correlates of glatiramer acetate adverse cardiovascular effects lead to a novel locus mediating coronary risk

    Get PDF
    Glatiramer acetate is used therapeutically in multiple sclerosis but also known for adverse effects including elevated coronary artery disease (CAD) risk. The mechanisms underlying the cardiovascular side effects of the medication are unclear. Here, we made use of the chromosomal variation in the genes that are known to be affected by glatiramer treatment. Focusing on genes and gene products reported by drug-gene interaction database to interact with glatiramer acetate we explored a large meta-analysis on CAD genome-wide association studies aiming firstly, to investigate whether variants in these genes also affect cardiovascular risk and secondly, to identify new CAD risk genes. We traced association signals in a 200-kb region around genomic positions of genes interacting with glatiramer in up to 60 801 CAD cases and 123 504 controls. We validated the identified association in additional 21 934 CAD cases and 76 087 controls. We identified three new CAD risk alleles within the TGFB1 region on chromosome 19 that independently affect CAD risk. The lead SNP rs12459996 was genome-wide significantly associated with CAD in the extended meta-analysis (odds ratio 1.09, p = 1.58×10-12). The other two SNPs at the locus were not in linkage disequilibrium with the lead SNP and by a conditional analysis showed p-values of 4.05 × 10-10 and 2.21 × 10-6. Thus, studying genes reported to interact with glatiramer acetate we identified genetic variants that concordantly with the drug increase the risk of CAD. Of these, TGFB1 displayed signal for association. Indeed, the gene has been associated with CAD previously in both in vivo and in vitro studies. Here we establish genome-wide significant association with CAD in large human samples.This work was supported by grants from the Fondation Leducq (CADgenomics: Understanding CAD Genes, 12CVD02), the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (e:AtheroSysMed, grant 01ZX1313A-2014 and SysInflame, grant 01ZX1306A), and the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no HEALTH-F2-2013-601456 (CVgenes-at-target). Further grants were received from the DFG as part of the Sonderforschungsbereich CRC 1123 (B2). T.K. was supported by a DZHK Rotation Grant. I.B. was supported by the Deutsche Forschungsgemeinschaft (DFG) cluster of excellence ‘Inflammation at Interfaces’. F.W.A. is supported by a Dekker scholarship-Junior Staff Member 2014T001 - Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Drought Stress Interacts With Powdery Mildew Infection in Tomato

    No full text
    Under field conditions, plants are often exposed to more than one stress factor at the same time, and therefore need to adapt to different combinations of stresses. Crosstalk between responses to abiotic and biotic stresses is known to occur, and the interaction between stress responses can be positive or negative. We studied the interaction of drought stress and powdery mildew (PM) infection in tomatoes using near-isogenic tomato lines (NILs) carrying the Ol-1, ol-2, or Ol-4 gene that confers resistance to tomato PM caused by Oidium neolycopersici. Our study demonstrated that drought-induced growth reduction was not further reduced by powdery mildew infection. Drought stress, however, decreased fungal infection in the susceptible genotype Moneymaker (MM) with fungal biomass tending to decrease further as the drought severity increased. Drought stress did not affect PM resistance levels of resistant NIL carrying ol-2 (a mutant of the tomato susceptibility Mlo gene) and Ol-4 an NLR (nucleotide-binding site-LRR) R gene associated with a fast hypersensitivity response (HR) but tended to slightly decrease disease levels of NIL-Ol-1 (no gene characterized yet, associated with a slow HR following PM infection). At the molecular level, genes involved in abscisic acid (ABA), salicylic acid (SA), and ethylene pathways were highly induced under combined stress indicating the involvement of ABA, SA, and ethylene in the crosstalk between abiotic and biotic stress. Messenger RNA expression of the ABA-responsive dehydrin SlTAS14 was induced under drought and combined stress with the highest induction under combined stress, and resistant NIL lines showed higher expression levels than MM. The expression of SlNCED (involved in ABA synthesis) was also upregulated under drought and highly induced under combined stress. Expression levels of pathogen responsive gene SlPR1 (an indicator of the SA pathway) and SlACS (involved in ethylene synthesis) were highly induced under powdery mildew infection in MM and the Ol-1 and were induced the most under combined stress in these lines. Taken together, these findings indicate that drought stress can interact with and influence PM infection in tomatoes in a resistance type-dependent manner. The role of hormonal signaling pathways in the crosstalk between drought stress and PM infection is further discussed

    Both major QTL and plastid-based inheritance of intumescence in diverse tomato (Solanum lycopersicum) RIL populations under different light conditions

    No full text
    Intumescence is a physiological disorder in tomato and other plant species that encompasses callus formation on leaves and stems. Next to a genetic predisposition, it has also been shown to be influenced by environmental factors like light spectrum. We grew tomato plants of four different recombinant inbred line (RIL) populations under high-pressure sodium (HPS) and red/blue LED supplemental lighting in a greenhouse and determined the severity of intumescence on 4-week-old plants, in three subsequent replicates. The intumescence severity was scored on a scale from 0 to 3. The severity of intumescence was highly genotype dependent in three out of the four tested tomato populations, with the heritability ranging from 54% to 83%. In those three populations, two to eight QTL for intumescence were identified. One major effect quantitative trait locus (QTL) on the top of chromosome 1 was at a similar position in two genetically different RIL populations. The amount of genetic variation explained for these QTL ranged from 30% to 70% depending on the population. Next to chromosomal influences, we also identified differences in effects from maternal plastids on intumescence, by using reciprocal crosses. The cultivation of the tomato plants under HPS lamps or under red/blue LED supplemental lighting had no significant influence on intumescence score. All major QTLs appeared to be reproducible among the three replicates and among the two light conditions. Significant, though, low negative correlations were identified between the intumescence score and the area of leaves, chlorophyll content index, photosynthesis efficiency and fresh weight to dry weight ratio, which can reflect possible effects of the disorder on multiple aspects of plant performance

    Genetic mapping of the tomato quality traits brix and blossom-end rot under supplemental LED and HPS lighting conditions

    No full text
    LED lighting has emerged as alternative to the current HPS standard in greenhouse production. However little is known about the impact on fruit quality under the different light spectra. We grew a biparental tomato RIL population between September 2019 and January 2020 under two commercial greenhouse supplemental lighting conditions, i.e. HPS, and 95% red/5% blue- LED, of about 220 µmol m−2 s−1 at maximum canopy height for 16 h per day. Differences in Brix and blossom-end rot (BER) between the two light conditions were observed and we studied the genetic influences on those traits, separating genetics located on chromosomes from genetics located in plastids. The Brix value was on average 11% lower under LED than under HPS supplemental lighting. A LED-light specific QTL for Brix was identified on chromosome 6. This QTL can be of interest for breeding for tomato varieties cultivated under LED supplemental lighting. A Brix-QTL on chromosome 2 was found for both light conditions. In our study fewer plants developed BER under LED supplemental lighting than under HPS. We identified a novel genetic locus on chromosome 11 for the incidence of BER that lead to a difference in about 20% of fruits with BER. This genetic component was independent of the light

    Genetic diversity of salt tolerance in Miscanthus

    No full text
    Miscanthus is a woody rhizomatous C4 grass that can be used as a CO2 neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in Miscanthus and discovered mechanisms and traits that can be used to improve the yield under salt stress. Seventy genotypes of Miscanthus (including 57 M. sinensis, 5 M. sacchariflorus, and 8 hybrids) were evaluated for salt tolerance under saline (150 mM NaCl) and normal growing conditions using a hydroponic system. Analyses of shoot growth traits and ion concentrations revealed the existence of large variation for salt tolerance in the genotypes. We identified genotypes with potential for high biomass production both under control and saline conditions that may be utilized for growth under marginal, saline conditions. Several relatively salt tolerant genotypes had clearly lower Na+ concentrations and showed relatively high K+/Na+ ratios in the shoots under salt stress, indicating that a Na+ exclusion mechanismwas utilized to prevent Na+ accumulation in the leaves. Other genotypes showed limited reduction in leaf expansion and growth rate under saline conditions, which may be indicative of osmotic stress tolerance. The genotypes demonstrating potentially different salt tolerance mechanisms can serve as starting material for breeding programs aimed at improving salinity tolerance of Miscanthus

    Genetic diversity of salt tolerance in Miscanthus

    No full text
    Miscanthus is a woody rhizomatous C4 grass that can be used as a CO2 neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in Miscanthus and discovered mechanisms and traits that can be used to improve the yield under salt stress. Seventy genotypes of Miscanthus (including 57 M. sinensis, 5 M. sacchariflorus, and 8 hybrids) were evaluated for salt tolerance under saline (150 mM NaCl) and normal growing conditions using a hydroponic system. Analyses of shoot growth traits and ion concentrations revealed the existence of large variation for salt tolerance in the genotypes. We identified genotypes with potential for high biomass production both under control and saline conditions that may be utilized for growth under marginal, saline conditions. Several relatively salt tolerant genotypes had clearly lower Na+ concentrations and showed relatively high K+/Na+ ratios in the shoots under salt stress, indicating that a Na+ exclusion mechanismwas utilized to prevent Na+ accumulation in the leaves. Other genotypes showed limited reduction in leaf expansion and growth rate under saline conditions, which may be indicative of osmotic stress tolerance. The genotypes demonstrating potentially different salt tolerance mechanisms can serve as starting material for breeding programs aimed at improving salinity tolerance of Miscanthus

    Ethylene and abscisic acid signaling pathways differentially influence tomato resistance to combined powdery mildew and salt stress

    Get PDF
    There is currently limited knowledge on the role of hormones in plants responses to combinations of abiotic and pathogen stress factors. This study focused on the response of tomato near-isogenic lines (NILs) that carry the Ol-1, ol-2, and Ol-4 loci, conferring resistance to tomato powdery mildew (PM) caused by Oidium neolycopersici, to combined PM and salt stress. These NILs were crossed with the notabilis (ABAdeficient), defenceless1 (JA-deficient), and epinastic (ET overproducer) tomato mutants to investigate possible roles of hormone signaling in response to combined stresses. In the NILs, marker genes for hormonal pathways showed differential expression patterns upon PM infection. The epinastic mutation resulted in breakdown of resistance in NILOl- 1 and NIL-ol-2. This was accompanied by reduced callose deposition, and was more pronounced under combined salt stress. The notabilis mutation resulted in H2O2 overproduction and reduced susceptibility to PM in NIL-Ol-1 under combined stress, but lead to higher plant growth reduction under salinity and combined stress. Resistance in NIL-ol-2 was compromised by the notabilis mutation, which was potentially caused by reduction of callose deposition. Under combined stress the compromised resistance in NIL-ol-2 was restored. PM resistance in NIL-Ol-4 remained robust across all mutant and treatment combinations. Hormone signaling is critical to the response to combined stress and PM, in terms of resistance and plant fitness. ABA appears to be at the crossroads of disease susceptibility/senescence and plant performance under combined stress These gained insights can aid in narrowing down targets for improving crop performance under stress combinations

    Does tomato breeding for improved performance under LED supplemental lighting make sense?

    No full text
    Differences in growth have been reported for tomato under LED compared to HPS light, however, it is not clear if breeding specific for LED supplemental light is worthwhile. Therefore, we derived four recombinant inbred line (RIL) tomato populations from parents with contrasting growth responses to different light spectra. These RIL populations were grown for four weeks under supplemental HPS or 95% red and 5% blue LED light in the greenhouse. For one population we also studied fruit production. Plant height and size of the side shoots of the young plants were strongly reduced under LED supplemental lighting compared to HPS in all populations. The adult plants showed shorter internode lengths, less trusses, less fruits, and lower yield of ripe fruits per plant under LED. However, when the unripe fruits at the last harvest day were included, the difference in yield between HPS and LED disappeared, indicating that the plants under LED light were compacter and slower in development, but in the end produced similar yield. We found numerous QTL, but hardly any of these QTL appeared to be significantly LED-specific. Also, we found very significant genetic effects of maternally inherited plastids and mitochondria, showing the importance of using a parental genotype as mother or as father. However, these effects were very similar between the two light conditions. We conclude that our study does not justify tomato breeding programs that are specifically targeted at 95% red and 5% blue LED supplemental lighting
    corecore