52 research outputs found

    Shell Shape Variation in Littorina Saxatilis

    Full text link

    Telerobotics: A simulation facility for university research

    Get PDF
    An experimental telerobotics (TR) simulation suitable for studying human operator (H.O.) performance is described. Simple manipulator pick-and-place and tracking tasks allowed quantitative comparison of a number of calligraphic display viewing conditions. A number of control modes could be compared in this TR simulation, including displacement, rate and acceleratory control using position and force joysticks. A homeomorphic controller turned out to be no better than joysticks; the adaptive properties of the H.O. can apparently permit quite good control over a variety of controller configurations and control modes. Training by optimal control example seemed helpful in preliminary experiments. An introduced communication delay was found to produce decrease in performance. In considerable part, this difficulty could be compensated for by preview control information. That neurological control of normal human movement contains a data period of 0.2 second may relate to this robustness of H.O. control to delay. The Ames-Berkeley enhanced perspective display was utilized in conjunction with an experimental helmet mounted display system (HMD) that provided stereoscopic enhanced views

    A university teaching simulation facility

    Get PDF
    An experimental telerobotics (TR) simulation is described suitable for studying human operator (HO) performance. Simple manipulator pick-and-place and tracking tasks allowed quantitative comparison of a number of calligraphic display viewing conditions. A number of control modes could be compared in this TR simulation, including displacement, rate, and acceleratory control using position and force joysticks. A homeomorphic controller turned out to be no better than joysticks; the adaptive properties of the HO can apparently permit quite good control over a variety of controller configurations and control modes. Training by optimal control example seemed helpful in preliminary experiments

    Estimation and evaluation of high-resolution soil moisture from merged model and Earth observation data in the Great Britain

    Get PDF
    Soil moisture is an important component of the Earth system and plays a key role in land-atmosphere interactions. Remote sensing of soil moisture is of great scientific interest and the scientific community has made significant progress in soil moisture estimation using Earth observations. Currently, several satellite-based coarse spatial resolution soil moisture datasets have been produced and widely used for various applications in climate science, hydrology, ecosystem research and agriculture. Owing to the strong demand for soil moisture data with high spatial resolution for regional applications, much effort has recently been devoted to the generation of high spatial resolution soil moisture data from either high-resolution satellite observations or by downscaling existing coarse-resolution satellite-based soil moisture datasets. In addition, land surface models provide an alternative way to obtain consistent high-resolution soil moisture information when forced with high-resolution inputs. The aim of this study is to create and evaluate high-resolution soil moisture products derived from multiple sources including satellite observations and land surface model simulations. The JULES-CHESS simulated soil moisture and satellite-based soil moisture datasets including SMAP L3E, SMAP L4, SMOS L4, Sentinel 1, ASCAT, and Sentinel 1/SMAP combined products were first validated against observed soil moisture from COSMOS-UK, a network of in-situ cosmic-ray based sensors. Second, an approach based on triple collocation was applied to compare these satellite products in the absence of a known reference dataset. Third, a combined soil moisture product was generated to integrate the better-performing soil moisture estimates based on triple collocation error estimation and a least-squares merging scheme. From further evaluation, it is found that the merged soil moisture integrates the characteristics of model simulation and satellite observations and particularly improves the limited temporal variability of the JULES-CHESS simulation. Therefore, we conclude that the triple collocation merging scheme is a simple and reliable way to combine satellite-based soil moisture products with outputs from the JULES-CHESS simulation for estimating model-data fused high-resolution soil moisture for the British mainland

    Lithium abundances of halo dwarfs based on excitation temperature. I. LTE

    Get PDF
    The discovery of the Spite plateau in the abundances of 7Li for metal-poor stars led to the determination of an observationally deduced primordial lithium abundance. However, after the success of the Wilkinson Microwave Anisotropy Probe (WMAP) in determining the baryon density, OmegaBh^2, there was a discrepancy between observationally determined and theoretically determined abundances in the case of 7Li. One of the most important uncertain factors in the calculation of the stellar 7Li abundance is the effective temperature, Teff. We use sixteen metal-poor halo dwarfs to calculate new Teff values using the excitation energy method. With this temperature scale we then calculate new Li abundances for this group of stars in an attempt to resolve the 7Li discrepancy. Using high signal-to-noise (S/N ~ 100) spectra of 16 metal-poor halo dwarfs, obtained with the UCLES spectrograph on the AAT, measurements of equivalent widths from a set of unblended FeI lines are made. These equivalent widths are then used to calculate new Teff values with the use of the single line radiative transfer program WIDTH6, where we have constrained the gravity using either theoretical isochrones or the Hipparcos parallax, rather than the ionization balance. The lithium abundances of the stars are calculated with these temperatures. The physical parameters are derived for the 16 programme stars, and two standards. These include Teff, log g, [Fe/H], microturbulence and 7Li abundances. A comparison between the temperature scale of this work and those adopted by others has been undertaken. We find good consistency with the temperatures derived from the Halpha line by Asplund et al. (2006), but not with the hotter scale of Melendez & Ramirez (2004).Comment: 13 pages, 9 figure

    Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization

    Get PDF
    In the 12,000 years preceding the Industrial Revolution, human activities led to significant changes in land cover, plant and animal distributions, surface hydrology, and biochemical cycles. Earth system models suggest that this anthropogenic land cover change influenced regional and global climate. However, the representation of past land use in earth system models is currently oversimplified. As a result, there are large uncertainties in the current understanding of the past and current state of the earth system. In order to improve repre- sentation of the variety and scale of impacts that past land use had on the earth system, a global effort is underway to aggregate and synthesize archaeological and historical evi- dence of land use systems. Here we present a simple, hierarchical classification of land use systems designed to be used with archaeological and historical data at a global scale and a schema of codes that identify land use practices common to a range of systems, both imple- mented in a geospatial database. The classification scheme and database resulted from an extensive process of consultation with researchers worldwide. Our scheme is designed to deliver consistent, empirically robust data for the improvement of land use models, while simultaneously allowing for a comparative, detailed mapping of land use relevant to the needs of historical scholars. To illustrate the benefits of the classification scheme and meth- ods for mapping historical land use, we apply it to Mesopotamia and Arabia at 6 kya (c. 4000 BCE). The scheme will be used to describe land use by the Past Global Changes (PAGES) LandCover6k working group, an international project comprised of archaeologists, historians, geographers, paleoecologists, and modelers. Beyond this, the scheme has a wide utility for creating a common language between research and policy communities, link- ing archaeologists with climate modelers, biodiversity conservation workers and initiatives.publishedVersio

    Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization

    Get PDF
    In the 12,000 years preceding the Industrial Revolution, human activities led to significant changes in land cover, plant and animal distributions, surface hydrology, and biochemical cycles. Earth system models suggest that this anthropogenic land cover change influenced regional and global climate. However, the representation of past land use in earth system models is currently oversimplified. As a result, there are large uncertainties in the current understanding of the past and current state of the earth system. In order to improve representation of the variety and scale of impacts that past land use had on the earth system, a global effort is underway to aggregate and synthesize archaeological and historical evidence of land use systems. Here we present a simple, hierarchical classification of land use systems designed to be used with archaeological and historical data at a global scale and a schema of codes that identify land use practices common to a range of systems, both implemented in a geospatial database. The classification scheme and database resulted from an extensive process of consultation with researchers worldwide. Our scheme is designed to deliver consistent, empirically robust data for the improvement of land use models, while simultaneously allowing for a comparative, detailed mapping of land use relevant to the needs of historical scholars. To illustrate the benefits of the classification scheme and methods for mapping historical land use, we apply it to Mesopotamia and Arabia at 6 kya (c. 4000 BCE). The scheme will be used to describe land use by the Past Global Changes (PAGES) LandCover6k working group, an international project comprised of archaeologists, historians, geographers, paleoecologists, and modelers. Beyond this, the scheme has a wide utility for creating a common language between research and policy communities, linking archaeologists with climate modelers, biodiversity conservation workers and initiatives
    • …
    corecore