391 research outputs found

    Odd Chern-Simons Theory, Lie Algebra Cohomology and Characteristic Classes

    Full text link
    We investigate the generic 3D topological field theory within AKSZ-BV framework. We use the Batalin-Vilkovisky (BV) formalism to construct explicitly cocycles of the Lie algebra of formal Hamiltonian vector fields and we argue that the perturbative partition function gives rise to secondary characteristic classes. We investigate a toy model which is an odd analogue of Chern-Simons theory, and we give some explicit computation of two point functions and show that its perturbation theory is identical to the Chern-Simons theory. We give concrete example of the homomorphism taking Lie algebra cocycles to Q-characteristic classes, and we reinterpreted the Rozansky-Witten model in this light.Comment: 52 page

    Competition of charge, orbital, and ferromagnetic correlations in layered manganites

    Full text link
    The competition of charge, orbital, and ferromagnetic interactions in layered manganites is investigated by magneto-Raman scattering spectroscopy. We find that the colossal magnetoresistance effect in the layered compounds results from the interplay of the orbital and ferromagnetic double-exchange correlations. Inelastic scattering by charge-order fluctuations dominates the quasiparticle dynamics in the ferromagnetic-metal state. The scattering is suppressed at low frequencies, consistent with the opening of a charge-density wave pseudogap.Comment: 10 pages, 4 figure

    An optimal gap theorem

    Get PDF
    By solving the Cauchy problem for the Hodge-Laplace heat equation for dd-closed, positive (1,1)(1, 1)-forms, we prove an optimal gap theorem for K\"ahler manifolds with nonnegative bisectional curvature which asserts that the manifold is flat if the average of the scalar curvature over balls of radius rr centered at any fixed point oo is a function of o(r2)o(r^{-2}). Furthermore via a relative monotonicity estimate we obtain a stronger statement, namely a `positive mass' type result, asserting that if (M,g)(M, g) is not flat, then lim infrr2Vo(r)Bo(r)S(y)dμ(y)>0\liminf_{r\to \infty} \frac{r^2}{V_o(r)}\int_{B_o(r)}\mathcal{S}(y)\, d\mu(y)>0 for any oMo\in M

    Electric current circuits in astrophysics

    Get PDF
    Cosmic magnetic structures have in common that they are anchored in a dynamo, that an external driver converts kinetic energy into internal magnetic energy, that this magnetic energy is transported as Poynting fl ux across the magnetically dominated structure, and that the magnetic energy is released in the form of particle acceleration, heating, bulk motion, MHD waves, and radiation. The investigation of the electric current system is particularly illuminating as to the course of events and the physics involved. We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial magnetic storms

    Nearby quasar remnants and ultra-high energy cosmic rays

    Get PDF
    As recently suggested, nearby quasar remnants are plausible sites of black-hole based compact dynamos that could be capable of accelerating ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate at the nuclei of nearby dead quasars, those in which the putative underlying supermassive black holes are suitably spun-up. Based on galactic optical luminosity, morphological type, and redshift, we have compiled a small sample of nearby objects selected to be highly luminous, bulge-dominated galaxies, likely quasar remnants. The sky coordinates of these galaxies were then correlated with the arrival directions of cosmic rays detected at energies >40> 40 EeV. An apparently significant correlation appears in our data. This correlation appears at closer angular scales than those expected when taking into account the deflection caused by typically assumed IGM or galactic magnetic fields over a charged particle trajectory. Possible scenarios producing this effect are discussed, as is the astrophysics of the quasar remnant candidates. We suggest that quasar remnants be also taken into account in the forthcoming detailed search for correlations using data from the Auger Observatory.Comment: 2 figures, 4 tables, 11 pages. Final version to appear in Physical Review

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Recommended Cross Sections for Electron-Indium Scattering

    Get PDF
    20 pags., 7 figs., 6 tabs.We report, over an extended energy range, recommended angle-integrated cross sections for elastic scattering, discrete inelastic scattering processes, and the total ionization cross section for electron scattering from atomic indium. In addition, from those angle-integrated cross sections, a grand total cross section is subsequently derived. To construct those recommended cross-section databases, results from original B-spline R-matrix, relativistic convergent close-coupling, and relativistic optical-potential computations are also presented here. Electron transport coefficients are subsequently calculated, using our recommended database, for reduced electric fields ranging from 0.01 Td to 10 000 Td using a multiterm solution of Boltzmann's equation. To facilitate those simulations, a recommended elastic momentum transfer cross-section set is also constructed and presented here.The work of K.R.H., O.Z., and K.B. was supported by the United States National Science Foundation under Grant Nos. OAC-1834740 and PHY-1803844 and by the XSEDE supercomputer Allocation No. PHY-090031. The (D)BSR calculations were carried out on Stampede2 at the Texas Advanced Computing Center. The work of D.V.F. and I.B. was supported by the Australian Research Council and resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. F.B. and G.G. acknowledge partial financial support from the Spanish Ministry MICIU (Project Nos. FIS2016- 80440 and PID2019-104727-RB-C21) and CSIC (Project No. LINKA20085). This work was also financially supported, in part, by the Australian Research Council (Project No. DP180101655), the Ministry of Education, Science and Technological Development of the Republic of Serbia, and the Institute of Physics (Belgrade).Peer reviewe
    corecore