research

Odd Chern-Simons Theory, Lie Algebra Cohomology and Characteristic Classes

Abstract

We investigate the generic 3D topological field theory within AKSZ-BV framework. We use the Batalin-Vilkovisky (BV) formalism to construct explicitly cocycles of the Lie algebra of formal Hamiltonian vector fields and we argue that the perturbative partition function gives rise to secondary characteristic classes. We investigate a toy model which is an odd analogue of Chern-Simons theory, and we give some explicit computation of two point functions and show that its perturbation theory is identical to the Chern-Simons theory. We give concrete example of the homomorphism taking Lie algebra cocycles to Q-characteristic classes, and we reinterpreted the Rozansky-Witten model in this light.Comment: 52 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2025