580 research outputs found

    Reflected Light from Sand Grains in the Terrestrial Zone of a Protoplanetary Disk

    Full text link
    We show that grains have grown to ~mm size (sand sized) or larger in the terrestrial zone (within ~3 AU) of the protoplanetary disk surrounding the 3 Myr old binary star KH 15D. We also argue that the reflected light in the system reaches us by back scattering off the far side of the same ring whose near side causes the obscuration.Comment: 22 pages, 5 figures. To be published in Nature, March 13, 2008. Contains a Supplemen

    The Emergence of the β€˜Social Licence to Operate’ in the Extractive Industries?

    Get PDF
    The β€˜social licence to operate’ (SLO) is a construct that has potential to transform the mining sector internationally. The SLO is increasing in importance because it can reduce all risks during the energy project life-cycle that are detrimental to the success of energy projects. This paper analyses how SLO's are at first perceived by interdisciplinary energy scholars before examining the legal nature of an SLO and looking at the effectiveness of such an agreement from the perspectives of both the energy company and the local community. In essence, this research seeks to address what is the legal basis of an SLO. Further, an original case study on Columbia is presented which highlights the SLO in action and its transformative effect. The paper also engages in new debates around the relationship of SLOs to related energy concepts such as the energy justice and environmental impact statements, which are also vital to energy infrastructure developmen

    A search for the decay modes B+/- to h+/- tau l

    Get PDF
    We present a search for the lepton flavor violating decay modes B+/- to h+/- tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472 million BBbar pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the tau four-momentum. The resulting tau candidate mass is our main discriminant against combinatorial background. We see no evidence for B+/- to h+/- tau l decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0β†’D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Ξ₯(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0β†’D*+D*- with an estimated background of 6.2Β±0.5 events. From these events, we determine the branching fraction to be B(B0β†’D*+D*-)=[8.3Β±1.6(stat)Β±1.2(syst)]Γ—10-4. The measured CP-odd fraction of the final state is 0.22Β±0.18(stat)Β±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qqΜ… continuum events near the Ξ₯(4S) resonance are presented. Using 20.8 fb-1 of data on the Ξ₯(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(Bβƒ—Ds+X)=(10.93Β±0.19Β±0.58Β±2.73)% and B(Bβƒ—Ds*+X)=(7.9Β±0.8Β±0.7Β±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections Οƒ(e+e-β†’Ds+X)Γ—B(Ds+→φπ+)=7.55Β±0.20Β±0.34pb and Οƒ(e+e-β†’Ds*Β±X)Γ—B(Ds+→φπ+)=5.8Β±0.7Β±0.5pb are measured at center-of-mass energies about 40 MeV below the Ξ₯(4S) mass. The branching fractions Ξ£B(Bβƒ—Ds(*)+D(*))=(5.07Β±0.14Β±0.30Β±1.27)% and Ξ£B(Bβƒ—Ds*+D(*))=(4.1Β±0.2Β±0.4Β±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4Β±0.1Β±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore