954 research outputs found

    Eclipse Timing Variation Analyses of Eccentric Binaries with Close Tertiaries in the Kepler field

    Full text link
    We report eclipse timing variation analyses of 26 compact hierarchical triple stars comprised of an eccentric eclipsing ('inner') binary and a relatively close tertiary component found in the {\em Kepler} field. We simultaneously fit the primary and secondary OCO-C curves of each system for the light-travel time effect (LTTE), as well as dynamical perturbations caused by the tertiary on different timescales. For the first time, we include those contributions of three-body interactions which originate from the eccentric nature of the inner binary. These effects manifest themselves both on the period of the triple system, P2P_2, and on the longer "apse-node" timescale. We demonstrate that consideration of the dynamically forced rapid apsidal motion yields an efficient and independent tool for the determination of the binary orbit's eccentricity and orientation, as well as the 3D configuration of the triple. Modeling the forced apsidal motion also helps to resolve the degeneracy between the shapes of the LTTE and the dynamical delay terms on the P2P_2 timescale, due to the strong dependence of the apsidal motion period on the triple's mass ratio. This can lead to the independent determination of the binary and tertiary masses without the need for independent radial velocity measurements. Through the use of our analytic method for fitting OCO-C curves we have obtained robust solutions for system parameters for the ten most ideal triples of our sample, and only somewhat less robust, but yet acceptable, fits for the remaining systems. Finally we study the results of our 26 system parameter fits via a set of distributions of various physically important parameters, including mutual inclination angle, and mass and period ratios.Comment: 83 pages, including 32 pages (26 tables) of tabulated Times of Minima data for the analysed 26 systems; submitted to MNRAS (revised version

    A multimodal deep learning architecture for smoking detection with a small data approach

    Full text link
    Introduction: Covert tobacco advertisements often raise regulatory measures. This paper presents that artificial intelligence, particularly deep learning, has great potential for detecting hidden advertising and allows unbiased, reproducible, and fair quantification of tobacco-related media content. Methods: We propose an integrated text and image processing model based on deep learning, generative methods, and human reinforcement, which can detect smoking cases in both textual and visual formats, even with little available training data. Results: Our model can achieve 74\% accuracy for images and 98\% for text. Furthermore, our system integrates the possibility of expert intervention in the form of human reinforcement. Conclusions: Using the pre-trained multimodal, image, and text processing models available through deep learning makes it possible to detect smoking in different media even with few training data

    Becoming adults: Exploring the late ontogeny of the human talus

    Get PDF
    Introduction: The talus plays an important role in receiving and dissipating the forces and linking the leg and the foot. As such, it is of paramount importance to analyze how its morphology, internal and external, changes during late ontogeny and through adolescence. Method: To explore both the external shape and the internal architecture of the talus, Geometric Morphometrics and trabecular analysis have been applied to a sample of 35 tali from modern human juveniles aged between 5 and 15 years old (Middle Neolithic (4800-4500 BCE) to mid-20th century). Results: Results show that, as the overall size of the talus increases, the shape and orientation of talar facets also change. The youngest individuals exhibit a functional talus that is still characterized by a relatively immature shape (e.g., subtly expressed margins of articular surfaces) with articular facets only minimally rotated towards an adult configuration. In adolescents, talar shape has achieved adult form after the age of 11, with all the articular facets and posterior processes well-developed. Considering internal morphology, trabecular bone varies between age classes. While Bone Volume Fraction shifts during the age 5-15 range, Degree of Anisotropy is relatively more stable over the developmental period examined in the study since it exhibits smaller variations between age classes. Discussion: This study examined the late ontogeny of the human talus by considering both internal and external morphology. Results suggest that, although the locomotion has already assumed an adult-like pattern, the exploration of late talar growth may help understand how the talus adapts to changes in locomotor activity and how it responds to the increase in weight. Present results can be used to a better understanding of talar plasticity, improving interpretations of adult human talar form

    Neuroinflammatory processes are augmented in mice overexpressing human heat-shock protein B1 following ethanol-induced brain injury

    Get PDF
    Background: Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. Methods: In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNF alpha and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. Results: Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNF alpha in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNF alpha compared to wild-type cells under inflammatory conditions. Conclusions; Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response.Peer reviewe

    DisProt: intrinsic protein disorder annotation in 2020

    Get PDF
    The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the ‘dark’ proteome

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV
    corecore