165 research outputs found

    Mechanisms underlying the detection of increments in parafoveal retina

    Get PDF
    AbstractIt is well established that the spectral sensitivity under photopic conditions varies across the human retina. We investigate the mechanisms underlying these spectral changes. Through the use of color appearance, flicker sensitivity, additivity, discrimination at threshold and modeling, we show that the changes in spectral sensitivity on a photopic white background across parafoveal retina are consistent with shifts in cone weightings to (LM) and (ML) chromatic channels. This two channel model, developed to account for foveal spectral sensitivity curves (Sperling & Harwerth, 1971 Science, 172, 180–184), provides a better description of parafoveal data than both a single color channel upper envelope model (comprised of a single red-green opponent channel and an achromatic mechanism) and a vector model (combining a red-green opponent channel with an achromatic component). Thus while the two channel model ([LM] and [ML]) of foveal color vision is generalizable to the parafovea, simple models with a unitary red/green process are not. Although the two channel model can accurately fit parafoveal spectral sensitivity curves without it, a small contribution from a luminance mechanism might improve the ability of the two channel model to account for threshold discrimination and additivity data

    Optical ‘dampening’ of the refractive error to axial length ratio:implications for outcome measures in myopia control studies

    Get PDF
    Purpose: To gauge the extent to which differences in the refractive error axial length relationship predicted by geometrical optics are observed in actual refractive/biometric data.Methods: This study is a retrospective analysis of existing data. Right eye refractive error [RX] and axial length [AXL] data were collected on 343 6-to-7-year-old children [mean 7.18 years (SD 0.35)], 294 12-to-13-year-old children [mean 13.12 years (SD 0.32)] and 123 young adults aged 18-to-25-years [mean 20.56 years (SD 1.91)]. Distance RX was measured with the Shin-Nippon NVision-K 5001 infrared open-field autorefractor. Child participants were cyclopleged prior to data collection (1% Cyclopentolate Hydrochloride). Myopia was defined as a mean spherical equivalent [MSE] ≤-0.50D. Axial length was measured using the Zeiss IOLMaster 500. Optical modelling was based on ray tracing and manipulation of parameters of a Gullstrand reduced model eye.Results: There was a myopic shift in mean MSE with age (6-7 years +0.87 D, 12-13 years -0.06 D and 18-25 years -1.41 D), associated with an increase in mean AXL (6-7 years 22.70 mm, 12-13 years 23.49 mm and 18-25 years 23.98 mm). There was a significant negative correlation between MSE and AXL for all age groups (all p <0.005). RX: AXL ratios for participant data were compared with the ratio generated from Gullstrand model eyes. Both modelled and actual data showed non-linearity and non-constancy, and that as axial length is increased, the relationship between myopia and axial length differs, such that it becomes more negative.Conclusions: Optical theory predicts that there will be a reduction in the RX: AXL ratio with longer eyes. The participant data although adhering to this theory show a reduced effect, with eyes with longer axial lengths having a lower refractive error to axial length ratio than predicted by model eye calculations. We propose that in myopia control intervention studies when comparing efficacy, consideration should be given to the dampening effect seen with a longer eye

    Contrast sensitivity is a significant predictor of performance in rifle shooting for athletes with vision impairment

    Get PDF
    Purpose: In order to develop an evidence-based, sport-specific minimum impairment criteria (MIC) for the sport of vision-impaired (VI) shooting, this study aimed to determine the relative influence of losses in visual acuity (VA) and contrast sensitivity (CS) on shooting performance. Presently, VA but not CS is used to determine eligibility to compete in VI shooting. Methods: Elite able-sighted athletes (n = 27) shot under standard conditions with their habitual vision, and with their vision impaired by the use of simulation spectacles (filters which reduce both VA and CS) and refractive blur (lenses which reduce VA with less effect on CS). Habitual shooting scores were used to establish a cut-off in order to determine when shooting performance was ‘below expected’ in the presence of vision impairment. Logistic regression and decision tree analyses were then used to assess the relationship between visual function and shooting performance. Results: Mild reductions in VA and/or CS did not alter shooting performance, with greater reductions required for shooting performance to fall below habitual levels (below 87% of normalized performance). Stepwise logistic regression selected CS as the most significant predictor of shooting performance, with VA subsequently improving the validity of the model. In an unconstrained decision tree analysis, CS was selected as the sole criterion (80%) for predicting ‘below expected’ shooting score. Conclusion: Shooting performance is better predicted by losses in CS than by VA. Given that it is not presently tested during classification, the results suggest that CS is an important measure to include in testing for the classification of vision impairment for athletes competing in VI shooting

    Quantification of Visual Field Loss in Age-Related Macular Degeneration

    Get PDF
    Background An evaluation of standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP) for the central 10–2 visual field test procedure in patients with age-related macular degeneration (AMD) is presented in order to determine methods of quantifying the central sensitivity loss in patients at various stages of AMD. Methods 10–2 SAP and SWAP Humphrey visual fields and stereoscopic fundus photographs were collected in 27 eyes of 27 patients with AMD and 22 eyes of 22 normal subjects. Results Mean Deviation and Pattern Standard Deviation (PSD) varied significantly with stage of disease in SAP (both p<0.001) and SWAP (both p<0.001), but post hoc analysis revealed overlap of functional values among stages. In SWAP, indices of focal loss were more sensitive to detecting differences in AMD from normal. SWAP defects were greater in depth and area than those in SAP. Central sensitivity (within 1°) changed by −3.9 and −4.9 dB per stage in SAP and SWAP, respectively. Based on defect maps, an AMD Severity Index was derived. Conclusions Global indices of focal loss were more sensitive to detecting early stage AMD from normal. The SWAP sensitivity decline with advancing stage of AMD was greater than in SAP. A new AMD Severity Index quantifies visual field defects on a continuous scale. Although not all patients are suitable for SWAP examinations, it is of value as a tool in research studies of visual loss in AMD

    Effect of lutein and antioxidant dietary supplementation on contrast sensitivity in age-related macular disease:A randomized controlled trial

    Get PDF
    Objective: The aim of the study is to determine the effect of lutein combined with vitamin and mineral supplementation on contrast sensitivity in people with age-related macular disease (ARMD). Design: A prospective, 9-month, double-masked randomized controlled trial. Setting: Aston University, Birmingham, UK and a UK optometric clinical practice. Subjects: Age-related maculopathy (ARM) and atrophic age-related macular degeneration (AMD) participants were randomized (using a random number generator) to either placebo (n = 10) or active (n=15) groups. Three of the placebo group and two of the active group dropped out. Interventions: The active group supplemented daily with 6 mg lutein combined with vitamins and minerals. The outcome measure was contrast sensitivity (CS) measured using the Pelli-Robson chart, for which the study had 80% power at the 5% significance level to detect a change of 0.3log units. Results: The CS score increased by 0.07 ± 0.07 and decreased by 0.02 ± 0.18 log units for the placebo and active groups, respectively. The difference between these values is not statistically significant (z = 0.903, P = 0.376). Conclusion: The results suggest that 6 mg of lutein supplementation in combination with other antioxidants is not beneficial for this group. Further work is required to establish optimum dosage levels
    corecore