1,586 research outputs found

    Complexity of normalization in the pure typed Lambda-calculus

    Get PDF

    Vision during manned booster operation Final report

    Get PDF
    Retinal images and accomodation control mechanism under conditions of space flight stres

    On Tao's "finitary" infinite pigeonhole principle

    Full text link
    In 2007, Terence Tao wrote on his blog an essay about soft analysis, hard analysis and the finitization of soft analysis statements into hard analysis statements. One of his main examples was a quasi-finitization of the infinite pigeonhole principle IPP, arriving at the "finitary" infinite pigeonhole principle FIPP1. That turned out to not be the proper formulation and so we proposed an alternative version FIPP2. Tao himself formulated yet another version FIPP3 in a revised version of his essay. We give a counterexample to FIPP1 and discuss for both of the versions FIPP2 and FIPP3 the faithfulness of their respective finitization of IPP by studying the equivalences IPP FIPP2 and IPP FIPP3 in the context of reverse mathematics. In the process of doing this we also introduce a continuous uniform boundedness principle CUB as a formalization of Tao's notion of a correspondence principle and study the strength of this principle and various restrictions thereof in terms of reverse mathematics, i.e., in terms of the "big five" subsystems of second order arithmetic

    Natural deduction for intuitionistic linear logic

    Get PDF
    AbstractThe paper deals with two versions of the fragment with unit, tensor, linear implication and storage operator (the exponential!) of intuitionistic linear logic. The first version, ILL, appears in a paper by Benton, Bierman, Hyland and de Paiva; the second one, ILL+, is described in this paper. ILL has a contraction rule and an introduction rule !I for the exponential; in ILL+, instead of a contraction rule, multiple occurrences of labels for assumptions are permitted under certain conditions; moreover, there is a different introduction rule for the exponential, !I+, which is closer in spirit to the necessitation rule for the normalizable version of S4 discussed by Prawitz in his monograph “Natural Deduction”.It is relatively easy to adapt Prawitz's treatment of natural deduction for intuitionistic logic to ILL+; in particular one can formulate a notion of strong validity (as in Prawitz's “Ideas and Results in Proof Theory”) permitting a proof of strong normalization.The conversion rules for ILL explicitly mentioned in the paper by Benton et al. do not suffice for normal forms with subformula property, but we can show that this can be remedied by addition of a special permutation conversion plus some “satellite” permutation conversions.Some discussion of the categorical models which might correspond to ILL+ is given

    Classical Mathematics for a Constructive World

    Full text link
    Interactive theorem provers based on dependent type theory have the flexibility to support both constructive and classical reasoning. Constructive reasoning is supported natively by dependent type theory and classical reasoning is typically supported by adding additional non-constructive axioms. However, there is another perspective that views constructive logic as an extension of classical logic. This paper will illustrate how classical reasoning can be supported in a practical manner inside dependent type theory without additional axioms. We will see several examples of how classical results can be applied to constructive mathematics. Finally, we will see how to extend this perspective from logic to mathematics by representing classical function spaces using a weak value monad.Comment: v2: Final copy for publicatio

    Arithmetical conservation results

    Full text link
    In this paper we present a proof of Goodman's Theorem, a classical result in the metamathematics of constructivism, which states that the addition of the axiom of choice to Heyting arithmetic in finite types does not increase the collection of provable arithmetical sentences. Our proof relies on several ideas from earlier proofs by other authors, but adds some new ones as well. In particular, we show how a recent paper by Jaap van Oosten can be used to simplify a key step in the proof. We have also included an interesting corollary for classical systems pointed out to us by Ulrich Kohlenbach

    An Intuitionistic Formula Hierarchy Based on High-School Identities

    Get PDF
    We revisit the notion of intuitionistic equivalence and formal proof representations by adopting the view of formulas as exponential polynomials. After observing that most of the invertible proof rules of intuitionistic (minimal) propositional sequent calculi are formula (i.e. sequent) isomorphisms corresponding to the high-school identities, we show that one can obtain a more compact variant of a proof system, consisting of non-invertible proof rules only, and where the invertible proof rules have been replaced by a formula normalisation procedure. Moreover, for certain proof systems such as the G4ip sequent calculus of Vorob'ev, Hudelmaier, and Dyckhoff, it is even possible to see all of the non-invertible proof rules as strict inequalities between exponential polynomials; a careful combinatorial treatment is given in order to establish this fact. Finally, we extend the exponential polynomial analogy to the first-order quantifiers, showing that it gives rise to an intuitionistic hierarchy of formulas, resembling the classical arithmetical hierarchy, and the first one that classifies formulas while preserving isomorphism

    On the strength of dependent products in the type theory of Martin-L\"of

    Full text link
    One may formulate the dependent product types of Martin-L\"of type theory either in terms of abstraction and application operators like those for the lambda-calculus; or in terms of introduction and elimination rules like those for the other constructors of type theory. It is known that the latter rules are at least as strong as the former: we show that they are in fact strictly stronger. We also show, in the presence of the identity types, that the elimination rule for dependent products--which is a "higher-order" inference rule in the sense of Schroeder-Heister--can be reformulated in a first-order manner. Finally, we consider the principle of function extensionality in type theory, which asserts that two elements of a dependent product type which are pointwise propositionally equal, are themselves propositionally equal. We demonstrate that the usual formulation of this principle fails to verify a number of very natural propositional equalities; and suggest an alternative formulation which rectifies this deficiency.Comment: 18 pages; v2: final journal versio
    • …
    corecore