78 research outputs found
Теплофизические модели слоисто-неоднородных горных массивов
Стисло розглянуто математичні моделі процесів переносу тепла в шаруватонеоднорідних гірничих масивах. Запропоновано загальний метод моделювання теплопереносу в шаруватих системах різної геометрії. Знайдено рівняння «склеювання», за допомогою якого розглянуто асимптотичні випадки.Mathematical models of heat transfer in layered inhomogeneous rock media are summarized. A general method of modeling the heat transfer in layered systems of a different geometry is proposed. A “matching” equation for different asymptotic cases has been found
Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice
Background: Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV) that express influenza hemagglutinin (HA) have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. Methodology/Principal Findings: In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5) or a soluble trimeric form thereof (NDV-sH5 3). A single intramuscular immunization with NDV-sH5 3 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH5 3 was less protective than NDV-H5 (50% vs 80% protection) when administered via the respiratory tract. The NDV-sH5 3 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. Conclusions/Significance: Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant vector vaccines expressing a soluble form of a heterologous viral membrane protein. Such vectors may be advantageous as they preclude the incorporation of heterologous membrane proteins into the viral vector particles
Natural killer cell activation by respiratory syncytial virus-specific antibodies is decreased in infants with severe respiratory infections and correlates with Fc-glycosylation
Objectives Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants, and there is no vaccine available. In early life, the most important contributors to protection against infectious diseases are the innate immune response and maternal antibodies. However, antibody-mediated protection against RSV disease is incompletely understood, as both antibody levels and neutralisation capacity correlate poorly with protection. Since antibodies also mediate natural killer (NK) cell activation, we investigated whether this functionality correlates with RSV disease.Methods We performed an observational case-control study including infants hospitalised for RSV infection, hernia surgery or RSV-negative respiratory viral infections. We determined RSV antigen-specific antibody levels in plasma using a multiplex immunoassay. Subsequently, we measured the capacity of these antibodies to activate NK cells. Finally, we assessed Fc-glycosylation of the RSV-specific antibodies by mass spectrometry.Results We found that RSV-specific maternal antibodies activate NK cells in vitro. While concentrations of RSV-specific antibodies did not differ between cases and controls, antibodies from infants hospitalised for severe respiratory infections (RSV and/or other) induced significantly less NK cell interferon-gamma production than those from uninfected controls. Furthermore, NK cell activation correlated with Fc-fucosylation of RSV-specific antibodies, but their glycosylation status did not significantly differ between cases and controls.Conclusion Our results suggest that Fc-dependent antibody function and quality, exemplified by NK cell activation and glycosylation, contribute to protection against severe RSV disease and warrant further studies to evaluate the potential of using these properties to evaluate and improve the efficacy of novel vaccines.Proteomic
Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits
Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)
Age at first birth in women is genetically associated with increased risk of schizophrenia
Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
Whole-genome characterization of lung adenocarcinomas lacking the RTK/RAS/RAF pathway
RTK/RAS/RAF pathway alterations (RPAs) are a hallmark of lung adenocarcinoma (LUAD). In this study, we use whole-genome sequencing (WGS) of 85 cases found to be RPA(−) by previous studies from The Cancer Genome Atlas (TCGA) to characterize the minority of LUADs lacking apparent alterations in this pathway. We show that WGS analysis uncovers RPA(+) in 28 (33%) of the 85 samples. Among the remaining 57 cases, we observe focal deletions targeting the promoter or transcription start site of STK11 (n = 7) or KEAP1 (n = 3), and promoter mutations associated with the increased expression of ILF2 (n = 6). We also identify complex structural variations associated with high-level copy number amplifications. Moreover, an enrichment of focal deletions is found in TP53 mutant cases. Our results indicate that RPA(−) cases demonstrate tumor suppressor deletions and genome instability, but lack unique or recurrent genetic lesions compensating for the lack of RPAs. Larger WGS studies of RPA(−) cases are required to understand this important LUAD subset. © 2021 The AuthorsCarrot-Zhang et al. perform whole-genome characterization of lung adenocarcinomas (LUADs) lacking RTK/RAS/RAF pathway alterations (RPAs) and identify mutations or structural variants in both coding and non-coding spaces that define a unique entity of RPA(−) LUADs and potentially explain the underlying biology of this disease
- …