
Whole-genome characterization of lung adenocarcinomas 
lacking alterations in the RTK/RAS/RAF pathway

A full list of authors and affiliations appears at the end of the article.

SUMMARY

RTK/RAS/RAF pathway alterations (RPAs) are a hallmark of lung adenocarcinoma (LUAD). In 

this study, we use whole-genome sequencing (WGS) of 85 cases found to be RPA(–) by previous 

studies from The Cancer Genome Atlas (TCGA) to characterize the minority of LUADs lacking 

apparent alterations in this pathway. We show that WGS analysis uncovers RPA(+) in 28 (33%) of 

the 85 samples. Among the remaining 57 cases, we observe focal deletions targeting the promoter 

or transcription start site of STK11 (n = 7) or KEAP1 (n = 3), and promoter mutations associated 

with the increased expression of ILF2 (n = 6). We also identify complex structural variations 

associated with high-level copy number amplifications. Moreover, an enrichment of focal 

deletions is found in TP53 mutant cases. Our results indicate that RPA(–) cases demonstrate tumor 

suppressor deletions and genome instability, but lack unique or recurrent genetic lesions 

compensating for the lack of RPAs. Larger WGS studies of RPA(–) cases are required to 

understand this important LUAD subset.

In Brief

Carrot-Zhang et al. perform whole-genome characterization of lung adenocarcinomas (LUADs) 

lacking RTK/RAS/RAF pathway alterations (RPAs) and identify mutations or structural variants in 
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both coding and non-coding spaces that define a unique entity of RPA(–) LUADs and potentially 

explain the underlying biology of this disease.

Graphical Abstract

INTRODUCTION

Lung adenocarcinoma (LUAD) is the most common lung malignancy and a leading cause of 

cancer death in the United States (Siegel et al., 2019). Most LUADs are driven by 

constitutive activation of mitogen-activated protein kinase (MAPK) signaling, which is, in 

turn, a consequence of alterations in receptor tyrosine kinases (RTKs), downstream 

RAS/RAF/MEK cascade proteins, and their regulators (Desai et al., 2014). Comprehensive 

studies using whole-exome (WES) and/or transcriptome sequencing (RNA-seq) have 

identified RTK/RAS/RAF pathway driver alterations in 70%–80% of LUADs (Campbell et 

al., 2016; Cancer Genome Atlas Research Network, 2014; Imielinski et al., 2012). Because 

driver alterations in RTK/RAS/RAF pathway genes such as EGFR, BRAF, ALK, RET, 

ROS1, and KRAS can be targeted by small-molecule inhibitors that significantly prolong 

survival, therapeutic decision making in LUADs is routinely directed by testing for many but 

not all RTK/RAS/RAF alterations (Herbst et al., 2018).

The remaining 20%–30% of cases, which we refer to as RTK/RAS/RAF pathway alteration-

negative, or RPA(–), LUADs, pose a major clinical challenge in precision thoracic oncology 
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(Campbell et al., 2016). A key question is whether these RPA(–) LUADs represent a distinct 

RTK/RAS/RAF-independent entity that is associated with a unique evolutionary path and 

therapeutic sensitivities, or whether they have been mislabeled as RPA(–) due to technical 

factors (e.g., sample quality, limitations in the genomic profiling technologies). Specifically, 

apparent RPA(–) LUADs may harbor pathogenic variants in RTK/RAS/RAF pathway genes 

that are not adequately detected by WES, RNA-seq, or targeted gene panels such as those 

commonly used in large research studies or in clinical laboratories (Vinagre et al., 2013; 

Weischenfeldt et al., 2017).

We postulated that a more comprehensive analysis of candidate RPA(–) LUADs using 

whole-genome sequencing (WGS) in addition to WES and RNA-seq may illuminate more 

precisely the basic biology and also influence clinical management. We, therefore, 

performed WGS on LUAD samples from The Cancer Genome Atlas (TCGA) cohort that 

had appeared in previous analyses to lack an RTK/RAS/RAF pathway-activating alteration 

(Campbell et al., 2016). Since WGS is particularly effective in the identification of non-

coding and structural genomic alterations, we hypothesized that analysis of those types of 

genome variation may reveal key features of RPA(–) LUAD biology.

RESULTS

Identification of RPA(–) LUADs

A previously published TCGA study of lung adenocarcinoma identified 383/501 (76%) of 

LUAD cases as RTK/RAS/RAF alteration positive, or RPA(+), using WES and RNA-seq 

(Table S1) (Campbell et al., 2016). Samples with activating mutations in KRAS, EGFR, 

BRAF, ERBB2, MET, RIT1, NRAS, RAF1, HRAS, ARAF, MAP2K1, or SOS1; loss of 

function mutations in NF1 or RASA1; fusions in ALK, ROS1, RET, MET, or NTRK2; and 

amplification of EGFR, ERBB2, KRAS, MET, FGFR1, or MAPK1 were classified as 

RPA(+) by WES and RNA-seq, which we henceforth designate as RPA(+)E. Among the 

remaining 118 LUADs, we performed WGS for 85 tumor-normal pairs (Figures 1A, 1B, and 

S1A) at an average of 73.5-fold (±7.9 SD) and 37.0-fold (±5.8 SD) coverage for tumor and 

matched normal samples, respectively, followed by somatic single-nucleotide variant (SNV), 

indel, copy number, and structural variant (SV) analysis (method details).

Our multi-step analysis schema is shown in Figure S1. In the first step, we re-analyzed the 

85 RPA(–)E cases to determine whether there was truly no evidence of coding mutations in 

the RTK/RAS/RAF pathway. Surprisingly, we found that 20/85 cases harbored KRAS 
hotspot mutations, with 8 samples showing the recently targetable p.G12C mutation (Canon 

et al., 2019; Ostrem et al., 2013). Re-examination of the WES data for those samples 

confirmed the mutation calls for 16/20 samples, but the read support was insufficient to 

enable high-confidence variant calling without invoking the WGS information (Figures 1C 

and S1B). The poor WES coverage for those KRAS mutations was likely due to low capture 

efficiency (Clark et al., 2011) for the first coding exon of KRAS, which contains codons 12 

and 13. In addition, the samples with KRAS mutations missed by WES showed lower tumor 

purity than did KRAS-mutated samples identified by WES (Figure S1C; Table S1), 

confirming that high sequencing depths were necessary for detecting the mutations reliably.
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Among the 85 samples, we also identified 8 cases with somatic SV and copy-number 

alterations (SCNAs) in known RTK/RAS/RAF pathway members. Among those alterations, 

we found complex SVs driving high-level amplification and overexpression of oncogenes, 

including EGFR (n = 1) and MAPK1 (n = 3). Further classification of complex SVs showed 

that the EGFR amplification was driven by a breakage-fusion-bridge cycle (BFBC) (Figure 

1D). We also found deletions coupled with the loss of heterozygosity (LOH), resulting in the 

decreased expression of RASA1 (n = 1) or NF1 (n = 1) (Figures 1B and 1E; Table S2), both 

of which negatively regulate RTK/RAS/RAF signaling. The focal deletion (379-bp length) in 

NF1 affected only a single exon that is not well represented in WES or RNA-seq, 

highlighting the advantage of WGS for the identification of focal SV events (Table S2). We 

also identified one case with ARAF amplification and one case with NRG1 fusion, which 

are alterations previously shown to activate RTK/RAS/RAF signaling in LUADs 

(Fernandez-Cuesta et al., 2014; Imielinski et al., 2014). Interestingly, we found amplification 

and overexpression of SOS1 in one case (TCGA-62–8399). Although SOS1 mutations have 

been shown to activate RTK/RAS/RAF signaling (Cai et al., 2019), the role played in 

RTK/RAS/RAF activation by the amplification described here is unclear.

Overall, we identified 28 (33%) additional RPA(+) cases among the 85 RPA(–)E that had 

undergone WGS (Figure S1A). We labeled the remaining 57 cases as RPA(–)G LUADs 

because they lacked an RTK/RAS/RAF pathway alteration identified by WGS (as well as 

WES and RNA-seq). The remainder of the results reported here focus on that subset.

Recurrent coding alterations in RPA(–)G LUADs

Having identified the 57 RPA(–)G LUAD cases, we sought to define their protein-coding 

driver alteration landscape. Among the coding sequences of 14,987 known protein-coding 

genes with a median expression RSEM ≥ 1 in all of the TCGA LUAD tumors, we analyzed 

protein-altering indels and SNVs across 57 RPA(–)G LUADs to identify recurrently mutated 

genes. The algorithm uses a gamma Poisson regression background model (Imielinski et al., 

2017) correcting for known covariates of LUAD mutation density (e.g., chromatin state, 

replication timing, GC content; method details). We found four tumor suppressor genes—

TP53, STK11, KEAP1, and SMARCA4—significantly mutated in the RPA(–)G samples 

(false discovery rate [FDR] < 0.1; Figure 2A). GISTIC analysis (Mermel et al., 2011) of 

WGS-derived SCNAs identified significantly deleted regions harboring SETD2 and 

significantly amplified regions harboring NKX2–1, KAT6A, CCNE1, MDM2, MYC, 

MCL1, and MYCL (FDR < 0.1; Figure 2A). Of note, we did not identify novel genes that 

were significantly mutated or amplified/deleted in the RTK/RAS/RAF pathway; in other 

words, we were unable to identify new putative driver alterations in an obvious candidate 

member gene of the RTK/RAS/RAF pathway, possibly owing to the limited sample size.

Our SV analysis (method details) identified simple, focal deletions (<100 kbp) targeting 

STK11 and KEAP1, coupled with LOH, leading to the decreased expression of these genes 

(Figures 2B–2E; Table S2). In two cases (TCGA-86–7711 and TCGA-50–6592), the focal 

deletions targeted the promoter/transcription start site of KEAP1 without altering the coding 

regions but resulted in the reduced expression of KEAP1 (Figure 2B; Table S2). The 

identification of focal deletions within the gene bodies of STK11, SMARCA4, and TP53 
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was reinforced by concordant exon-skip-ping junctions in the corresponding RNA-seq data, 

suggesting that those transcriptomic variants were driven by DNA alterations and not by 

alternative splicing (Figures S2A–S2C). Alterations in STK11 in KRAS-driven LUADs have 

been shown to be associated with immune exclusion and a poor response to 

immunotherapies (Skoulidis et al., 2018). We found that loss-of-function events in STK11 
were anti-correlated with the computationally estimated fraction of leukocytes in the tumor 

(Figure S2D). We then combined the 28 additional RPA(+)G cases identified from our cohort 

with 40 RPA(+)G cases that have WGS data from a previously published TCGA study 

(Imielinski et al., 2017) (Figure S1A). We found STK11 focal deletions in 4/68 RPA(+)G 

samples, but found no significant difference in STK11 deletion frequency between RPA(+)G 

and RPA(–)G (p = 0.22, Fisher’s exact test), suggesting that this event may be equally 

prevalent in both LUAD types.

As opposed to 411 RPA(+) cases from the full TCGA LUAD cohort (including the 28 cases 

rescued from the RPA(–)E category by our WGS analysis), we found a significant 

enrichment of TP53 mutations (p = 5.5 × 10−4, odds ratio [OR] = 2.97, Fisher’s exact test), 

KEAP1 mutations (p = 4.3 × 10−4, OR = 3.06), and SMARCA4 (p = 3.4 × 10−4, OR = 4.16) 

in the RPA(–)G cases (Figure S2E) for genes listed in Figure 2A. When expanding the 

analysis to 239 COSMIC cancer genes, we found an additional enrichment of mutations in 

NRG1 (p = 1.2 × 10−5, OR = 12.0), ESR1 (p = 4.5 × 10−4, OR = 11.4), BLM (p = 1.1 ×10−3, 

OR = 12.4), and FOXO3 (p = 2.3 × 10−3, OR = 9.29; Figures S2E and S2F). The RPA(–)G 

samples also showed significantly higher tumor mutation burden (TMB) in a linear 

regression model controlled for tumor purity (Figure S2G). We did not find additional 

differences between RPA(+)G and RPA(–)G LUADs in their molecular/clinical features 

(leukocyte fraction, genome doubling, degree of aneuploidy, age of diagnosis, and genetic 

ancestry) (Carrot-Zhang et al., 2020). We found that recent smokers (last smoking year <15) 

were enriched in the RPA(–)G group compared to the RPA(+) group, although mutagen 

activity associated with tobacco smoking activity (COSMIC SNV signature 4) was not 

different between the RPA(–)G group and the RPA(+)G group, controlling for tumor purity 

(Figure S2H).

Recurrent non-coding alterations in RPA(–)G LUADs

We next asked whether the RPA(–)G cases harbored novel SNVs or indels outside the coding 

genome. We focused the search on regions nominated by a recent TCGA ATAC-seq (assay 

for transposase-accessible chromatin using sequencing) study that identified regions of open 

chromatin, and required that the region be identified in at least 2/44 LUAD samples subject 

to ATAC-seq (Corces et al., 2018). Open chromatin regions are associated with active 

promoters, enhancers, and transcription factor-binding sites, and thus may be targets of 

positive somatic selection (Khurana et al., 2016). When we analysed 60,572 total mutations 

in 139,841 LUAD-specific open chromatin regions (2.7% of the genome) using gamma 

Poisson regression with known covariates of LUAD passenger mutation density (method 

details), we found 3 loci that were nominally enriched (FDR < 0.25) in SNVs or indels, 

located near ILF2, CUL2, and TSN (Figure 3A). Applying the intuition that expressed and 

dosage-sensitive genes may be targets of noncoding alteration, we examined genes that were 

consistently expressed across TCGA LUAD (median RSEM > 10) and recurrently amplified 
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in RPA(–)G samples (see method details). This analysis yielded ILF2 as the sole significant 

peak (FDR < 0.1; Figure 3B).

The promoter region of ILF2 (p = 2.7 3 10−6, coefficient = 2, gamma Poisson regression) 

was mutated in 6/57 cases (Figure 3C). We used the FunSeq2 method to annotate the 

sequence motifs bound by transcription factors (Fu et al., 2014). All 6 mutations lay in the 

“sensitive” and “ultrasensitive” (i.e., highly conserved) regions of the genome (Khurana et 

al., 2013). One mutation (chr1:153643633, G → A) was predicted to disrupt a HOXB6 

motif and another mutation (chr1:153643690, G → T) was predicted to disrupt an NR3C1 

motif. We did not observe any mutational signature enriched in the 6 mutations. Moreover, 

RPA(–)G cases harboring ILF2 promoter mutations showed increased expression of ILF2, 

compared to ILF2-wild-type cases (Figure 3D) or cases harboring other mutations within the 

±10-kbp window of the promoter region (Figures S3A and S3B), after controlling for the 

local copy number of ILF2 and tumor purity. However, non-coding mutations near CUL2 
did not affect CUL2 expression, and intronic mutations in TSN showed a non-significant 

trend toward an increase in TSN expression (p = 0.066). ILF2 is located in chr1q21.3, which 

is frequently amplified in LUADs. In myeloma, increases in ILF2 expression through 

amplification have been shown to promote tolerance of genomic instability and drive 

resistance to DNA-damaging therapies, through dysregulation of RNA splicing and DNA 

damage response pathways (Marchesini et al., 2017). Consistent with that role of ILF2, we 

found ILF2 expression to be associated with increased SV burden (p = 0.01, coefficient = 

0.9, negative binomial regression).

Complex SV patterns in RPA(–)G LUADs

By integrating read depth changes with rearrangement breakpoint locations to generate 

junction-balanced genome graphs (method details), we analyzed genome graphs (Hadi et al., 

2020) of the 57 RPA(–)G cases to identify complex patterns of structural variation. Analysis 

of subgraphs (https://github.com/mskilab/gGnome) in those graphs identified multiple 

instances of complex amplicons (18 double minute, 5 BFBC, 5 tyfonas, 52 pyrgo), as well as 

simple duplications (mean = 16.3 per sample; Figure 4A). Tyfonas are recently identified SV 

patterns comprising hundreds of high junction copy number (JCN) and fold-back inversion 

junctions (Hadi et al., 2020) that are enriched in cancers such as dedifferentiated 

liposarcomas and acral melanomas. As an example, we show an amplification of NKX2–1 
driven by tyfonas in Figure S4A. Pyrgo, which comprises “towers” of low copy duplication 

junctions (Hadi et al., 2020), were also found to drive the amplification of LUAD loci, 

including NKX2–1 (Figure S4B).

Genes located inside double minute, BFBC, and tyfonas events were markedly enriched in 

expression outlier genes (p < 1 × 10−16, Mann-Whitney U test) relative to genes involved in 

pyrgo and simple duplication events (Figure 4B), suggesting that the former events were 

retained in the cancer cell due to the growth-promoting effects of altered gene expression. 

Although none of these complex SV types were correlated with TP53 mutations, which are 

thought to generate genomic instability, there was a significantly higher incidence of simple 

deletions observed in the TP53 mutant cases (p = 1 × 10−4, Mann-Whitney U test; Figure 
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4C). That association held true when including the 68 RPA(+)G samples and controlling for 

purity and RPA status (p = 2 × 10−4, coefficient = 12, linear regression).

Double minutes were the most common complex SV type seen in the RPA(–)G cases (12/57 

samples; Figure 4A). Like extrachromosomal circular DNA segments, double minutes do 

not segregate symmetrically; thus, their dosage per cell is exquisitely responsive to selection 

pressure (Verhaak et al., 2019; Wu et al., 2019). As a result, at least one of the genes in any 

given double minute likely contributes to tumor development. To leverage this intuition, we 

focused on a relatively small double minute identified in case TCGA-55–5899 (Figure 4D). 

We found that this double minute fused and amplified multiple focal regions on chromosome 

13 spanning 1.0 Mbp and resulted in the high-level gain (>10 copies) of 3 intact genes 

(UBL3, SOX21, and LIG4). Two of these, UBL3 and LIG4, were overexpressed in 

TCGA-55–5899 relative to the full LUAD cohort with RNA-seq data (Figure 4E). Because 

we did not observe any genes to be amplified and overexpressed in more than one RPA(–)G 

case (Table S3), larger numbers of cases would have to be analyzed to gain an understanding 

of the possible role that genes amplified by double minutes play in driving RPA(–) LUADs.

DISCUSSION

Although large-scale genomic studies have shown LUADs to be molecularly heterogeneous, 

the majority of LUAD cases share the common feature of RTK/RAS/RAF signaling 

activation through a genetic driver (Desai et al., 2014; Swanton and Govindan, 2016). A key 

question, however, is whether RPA(–) LUADs—which, by definition, lack RTK/RAS/RAF 

drivers—represent a biologically distinct entity. Our results suggest that they are 

heterogeneous but that they do share common biological features, including a high 

frequency of TP53 mutations and high mutation burden. Those features tend to distinguish 

RPA(–) LUADs from their RPA(+) counterparts.

A key confounder when we try to define RPA(–) LUADs as a distinct entity is the technical 

limitation of reliably detecting RTK/RAS/RAF pathway genomic lesions in impure tumor 

samples. Strikingly, 28/85 cases in the present study that were previously found to be 

negative for any RTK/RAS/RAF lesion by WES and RNA-seq pipelines were subsequently 

shown by our WGS analysis to harbor a somatic RTK/RAS/RAF driver. The high prevalence 

of overlooked KRAS mutations is explained in part by low tumor purity and/or decreased 

probe affinity for the GC-rich exons in KRAS during WES library preparation (Clark et al., 

2011). The recent discovery of small molecules with activity against KRAS p.G12C LUAD 

(Canon et al., 2019; Ostrem et al., 2013) highlights the importance of the precise 

identification of mutations at that locus. However, many of the challenges could be 

overcome by higher read depth (e.g., >40 × minimal on-target coverage), which is now 

routinely achieved by some clinical-grade target capture assays (Goodman et al., 2017; Zehir 

et al., 2017). Nevertheless, the high rate of missed RTK/RAS/RAF lesions in our WGS 

cohort tells a cautionary tale: false-negative calls should always be considered even when 

working with high-quality datasets.

Eight of the 28 rescued RPA(+)G cases in our WGS cohort harbored cryptic SV lesions 

(protein-coding fusions, SCNAs), which represent alternative mutational mechanisms for 
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(in)activating RTK/RAS/RAF genes (e.g., EGFR BFBC, focal deletions of NF1 and 

RASA1). WGS is naturally adapted to detect such complex or subtle structural alterations 

(Hadi et al., 2020). We leveraged that capability to identify a spectrum of SV patterns among 

the 57 RPA(–)G cases. Notably, 9/85 (11%) samples in the cohort harbored focal deletions in 

STK11 that were undetected by WES. Alterations in genes such as STK11 and KEAP1 have 

come into focus as possible prognostic and/or predictive biomarkers in patients with lung 

cancer (Arbour et al., 2018; Skoulidis et al., 2018); the inclusion of full genomic capture 

probe sets for those genes may become necessary in the near future to identify accurately 

samples with alterations. Double minutes, the most prevalent SV type among complex SVs 

in the RPA(–)G cases have recently been implicated in genomic plasticity, oncogene 

selection, and chromatin evolution (Verhaak et al., 2019). Further studies analyzing larger 

cohorts will be valuable for dissecting the role that they may play in driving RPA(–) LUAD 

biology in greater detail.

If the 57 RPA(–)G cases identified in this study represent a distinct biological entity of 

RTK/RAS/RAF-independent LUADs, then what pathway drives them to proliferate? Do 

RPA(–) LUADs show distinct genetic or therapeutic vulnerabilities? Although our analyses 

have nominated candidate drivers in LUAD (e.g., ILF2), it is unclear how tumors harboring 

an alteration in such genes would phenocopy the proliferative effect of RTK/RAS/RAF 

alteration. Perhaps the frequent SV-driven loss of tumor suppressors (e.g., STK11) or 

amplification of genes operating downstream of RTK/RAS/RAF signaling (e.g., MYC), 

which we observed in our RPA(–)G LUADs, can cooperate to fill this missing role (Sears et 

al., 2000). It is also possible that a small subset of RPA(–) tumors are still RTK/RAS/RAF 

driven but activate the pathway through epigenetic dysregulation or genetic alterations in 

genes that are less frequently altered in LUAD, and therefore are not detected by the 

statistical methods used in this study. Alternatively, the biology of RPA(–) LUADs may 

resemble that of other cancer types in which RTK/RAS/RAF alterations are rarely seen and 

are marked by early TP53 loss and high TMB; those tumor subtypes may take a different 

evolutionary path that is less dependent on the sustained proliferative signaling that 

RTK/RAS/RAF activation provides (Chen et al., 2019; Drosten et al., 2014; Salgueiro et al., 

2020). Such a path may accumulate key genetic alterations in a different order than RPA(+) 

tumors (Lee et al., 2019), begin in an alternate cell of origin, or undergo lineage switching in 

the course of evolution.

Our findings suggest that RPA(–) LUAD is likely to represent a heterogeneous entity and 

that the WGS of much larger cohorts of RPA(–) and RPA(+) LUADs would be necessary to 

fully address the nature of their underlying biology.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

RESOURCE AVAILABILITY

Lead contact—Further information and requests for data or code generated in this study 

should be directed to and will be fulfilled by the Lead Contact, Marcin Imielinski 

(mai9037@med.cornell.edu).
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Materials availability—This study did not generate new unique reagents.

Data and code availability—Whole-genome BAM files of 85 RPA(–) samples (https://

portal.gdc.cancer.gov/repository?facetTab=files&filters=%7B%22op%22%3A%22and

%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content

%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value

%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C

%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C

%22value%22%3A%5B%22TCGA-LUAD%22%5D%7D%7D%2C%7B%22op%22%3A

%22in%22%2C%22content%22%3A%7B%22field%22%3A

%22files.experimental_strategy%22%2C%22value%22%3A%5B%22WGS%22%5D%7D

%7D%5D%7D) and raw mutation/SV calls generated during this study are released to 

Genomic Data Commons (https://gdc.cancer.gov/about-data/publications/TCGALUAD). 

The controlled data access is covered in dbGaP with the accession number dbGaP: 

phs000178 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000178.v10.p8). All software packages used in the study are available to the 

public and links to sources can be found in the Key resources table and Method details. 

Other analysis scripts are available upon request. Experimental model and subject details

In this study, we used tumor and matched normal samples collected by the Cancer Genome 

Atlas (TCGA) Research Network with informed consent under their local Institutional 

Institutional Review Boards. DNA samples from 85 lung cancer cases were processed by 

whole-genome sequencing, with associated clinicopathologic data collected by the TCGA.

METHOD DETAILS

Sample selection and whole-genome sequencing—Eighty-five samples were 

selected for WGS, among 118 previously whole-exome sequenced TCGA LUAD samples 

that were negative for 1) activating mutations in KRAS, EGFR, BRAF, ERBB2, MET, 

RIT1, NRAS, RAF1, HRAS, ARAF, MAP2K1 and SOS1; 2) loss-of-function mutations in 

NF1 and RASA1; 3) fusions in ALK, ROS1, RET, MET and NTRK2; and 4) amplification 

in EGFR, ERBB2, KRAS, MET, FGFR1 and MAPK1. The same criteria were applied to re-

identify RPA(–) samples in the WGS analysis, except that overexpression (defined as a z-

score greater than 1.96 for gene expression among the full TCGA LUAD samples) was 

additionally required to qualify an amplification as an oncogenic driving event.

DNA was sequenced using the Illumina HiSeq platform. Paired-end sequencing reads were 

aligned to hg19 using BWA (v0.6.2) (Li and Durbin, 2009) aln and processed through 

NovoSort (v1.03.01) to mark PCR duplicates (http://www.novocraft.com/products/

novosort/), then through GATK (v3.4) (McKenna et al., 2010) for indel realignment (jointly 

for the normal and tumor samples). Base quality scores were recalibrated with GATK.

Identification of somatic mutations and SCNAs—Somatic SNVs were called by 

MuTect (v1.1.7) (Cibulskis et al., 2013), Strelka (v1.0.14) (Saunders et al., 2012) and 

LoFreq (v2.1.3a) (Wilm et al., 2012). Somatic indels were called by Strelka, Pindel (v0.2.5) 

(Ye et al., 2009) and Scalpel (v0.5.3) (Narzisi et al., 2014). Variants called by only one of the 

three callers were filtered out. Final VCFs were formatted to pass the EBI validator (v 0.4.3) 
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(https://vcftools.github.io/perl_module.html). Variants were annotated for their effect (non-

synonymous coding, nonsense, etc.) using snpEff (Cingolani et al., 2012b) based on human 

genome annotations from ENSEMBL. We further annotated the variants using snpEff 

(Cingolani et al., 2012b), snpSift (Cingolani et al., 2012a) and GATK VariantAnnotator 

module with information from COSMIC (Sondka et al., 2018), 1000 Genomes Project 

(Auton et al., 2015), ExAC (Karczewski et al., 2017), CIViC (Griffith et al., 2017), and 

UniProt (UniProt Consortium, 2019). Non-coding mutations were further annotated by 

Funseq2 (Fu et al., 2014). Mutational signatures were analyzed using SignatureAnalyzer 

(Kim et al., 2016).

Data on genetic ancestry, genome double, aneuploidy, leukocyte fraction and other clinical 

features were downloaded from the Genomic Data Commons (https://

portal.gdc.cancer.gov/). GISTIC 2.0 (Mermel et al., 2011) was used to identify significant 

SCNAs using copy number segments generated by Titan (Ha et al., 2014). High-level 

amplification was defined by log2-transformed copy number ratios > 1. To calculate the 

allelic fraction of KRAS mutations in WGS and WES, we applied a custom script counting 

reads supporting the altered alleles and the reference alleles, respectively (Carrot-Zhang and 

Majewski, 2017). Reads with based quality and mapping quality lower than 30 were 

removed.

Identification of structural variations and genome graph reconstructions—
Somatic aberrant junctions (i.e., pairs of strand-specific disconnected loci that form neo-

adjacencies in the cancer genome) were identified by SvABA v1.1.3 (Wala et al., 2018), 

using the default setting for tumor-normal pairs. We then used JaBbA, a junction balance 

analysis (Hadi et al., 2020) to reconstruct a genome graph for each sample through the 

application of a maximum likelihood model to high-resolution binned (200bp) normalized 

read depth and unfiltered SvABA junctions (after exclusion of small (< 1kbp) deletion-like 

junctions). The read depth input to JaBbA was calculated as the ratio between tumor and 

normal sample’s WGS read counts in all 200bp genomic bins, corrected for guanine/

cytosine content and 100-mer mappability. Subsequently, we used Circular Binary 

Segmentation (Olshen et al., 2004) with alpha parameter at 1×10−5 to derive a primary 

segmentation for each sample. The segmentation was later combined with SvABA-identified 

aberrant junctions to build the genome graph. The affine mapping between read depth signal 

and integer copy number is dictated by the hyperparameters ploidy and purity. We used the 

published purity and ploidy values from the GDC (https://portal.gdc.cancer.gov/). Any 

sample missing from that resource was supplemented by Sequenza (Favero et al., 2015), 

based on the allelic read counts at germline heterozygous sites using Samtools (Li et al., 

2009). A total of 13 types of simple and complex SV events were annotated and visualized 

using gGnome (https://github.com/mskilab/gGnome), with the same default parameters as 

described in Hadi et al. (2020). SV burden per sample was defined by the number of 

junctions of simple SVs in that sample. Genome graphs drawn in copy number ~genomic 

coordinates plots are made with gTrack (https://github.com/mskilab/gTrack) and gGnome 

(https://github.com/mskilab/gGnome).
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Oncoprints, mutation barplots, and expression quantiles—Genomic alterations 

affecting genes in the cohort were plotted with ComplexHeatmap (Gu et al., 2016) with the 

aforementioned definitions for SNVs and CNAs. Tumor mutation burden was calculated by 

dividing the total number of SNVs in the eligible mutation calling region proposed in (Li, 

2014) by the total width of these regions (2429.397 Mbp). Expression quantiles and density 

plots are made with the gene’s RSEM (RNA-seq by Expectation Maximization) values of 

the full set of 507 LUAD RNA-seq in TCGA. Mutation barplots (“loliplot”) are made with 

trackViewer package (http://bioconductor.org/packages/release/bioc/html/trackViewer.html).

Differential alteration frequencies between RPA(–)G and RPA(+)G—The 

frequency of genomic alterations in various genes were compared between RPA(–)G and 

RPA(+)G using Fisher’s exact tests with false discovery rate (FDR) threshold below 0.1. To 

maximize statistical power, we only considered the variant types that can be detected both 

through WES and WGS, and compared the frequency of alteration in the RPA(–)G group (N 

= 57) to the rest of all the TCGA LUAD samples with WES-based variant calls from the 

PanCanAtlas (N = 411, https://api.gdc.cancer.gov/data/1c8cfe5f-e52d-41ba-94da-

f15ea1337efc). Same method was used for clinical or molecular features, including smoking 

history, age of diagnosis, leukocyte fraction, genome doubling, degree of aneuploidy, genetic 

ancestry, primary disease stage (data available through GDC) using Fisher’s exact test or 

Wilcoxon’s Rank test. TMB comparison was performed based on WES-defined TMB values 

using linear regression controlling for tumor purity.

SCISSOR analysis—RNA-seq BAM files for TCGA LUAD samples were used as input 

to SCISSOR (Choi et al., 2021) for analysis of structural changes in RNA transcripts. 

Briefly, SCISSOR is a statistical method for unsupervised screening of a range of structural 

alterations in RNA-seq data including alternative splicing, intron retention, de novo splice 

sites, intra-/intergenic deletions, and alternative transcription start/termination. For each gene 

under consideration, SCISSOR aims to identify anomalous shapes in expression profile by 

considering aligned short read data through a base-level read pileup. To identify such profile 

shape changes, it quantifies the level of abnormality of each sample using a projection depth 

approach (Dang and Serfling, 2010; Donoho and Gasko, 1992) and then uses the statistics 

from the cohort to detect and rank shape outliers. Using reference exon coordinates derived 

from UCSC hg19 known genes, we constructed base-resolution read coverage data including 

intronic parts from the BAM files. For TP53, STK11, and SMARCA4, SCISSOR identified 

shape changes where the aligned coverage shape is significantly different from the majority 

of samples with a significance level 1×10−4. This process confirmed the effects of focal, 

exon deletions on RNA transcripts.

Recurrence analysis of genomic alterations—A gamma-Poisson regression 

framework (fishHook) that takes into account different confounders that affect the mutation 

count in a population was used (Imielinski et al., 2017). fishHook allows for defining the 

genomic region of interest, called the hypotheses set, to be used for recurrence analyses. For 

coding mutation analysis, models were fitted with gene bodies as the hypotheses set. Non-

synonymous, missense and truncating mutations were tested separately. We also corrected 

for multiple hypotheses on 47 genes identified by prior genomic studies on LUAD 
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(Campbell et al., 2016; Cancer Genome Atlas Research Network, 2014; Imielinski et al., 

2012). For non-coding mutation analysis, lung-specific ATAC-seq peaks (https://

gdc.cancer.gov/about-data/publications/ATACseq-AWG) defining open chromatin regions 

(Corces et al., 2018) were used as the hypotheses set. Lift over was used to map hg38 

coordinates to hg19. ATAC peaks occurring at least 2 of 44 LUAD samples were used, and 

peaks within 100bp distance were merged. The model was fitted with the following 

covariates of the neutral mutation density: 1) Fraction of heterochromatic regions in each 

query interval. Heterochromatin annotation obtained from chromHMM on A549 cell line 

from Epigenomics Roadmap (Kundaje et al., 2015); 2) Gene expression data for LUAD for 

A549 cell line; 3) GC content in reference genome; 4) Replication timing from normal 

human epidermal keratinocytes; 5) DNA accessibility annotation from DNase-seq for A549 

cell line. Besides genome-wide hypotheses, we also tested within the subset of ATAC peaks 

that overlaps recurrently amplified regions (Campbell et al., 2016) and with putative target 

gene median RSEM > 10 among LUAD samples.

Associations between non-coding mutation and target gene expression are evaluated through 

fitting an ordinary linear model to log RSEM values with the non-coding mutation presence 

and amplification status of ILF2 gene.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests are carried out using R (v3.6.1) and Bioconductor (v3.10) and listed 

within the figure legends and Results. Fisher’s exact tests are executed with “fisher.test” 

function, Wilcoxon’s Rank test with “wilcox.test,” ordinary linear models with “lm.”

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Whole-genome sequencing of LUAD(–) RPA reveals complex structural 

variations

• RPA(–) LUADs harbor focal deletions in tumor suppressors

• RPA(–) LUADs show elevated TMB and TP53 mutation frequency

• ILF2 promoter mutations are recurrent in RPA(–) LUADs
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Figure 1. Identification of RPA(–) LUADs
(A) Identification of 118 RPA(–)E LUAD cases from the 501 TCGA LUAD cohort, defined 

by WES or RNA-seq analysis. Eighty-five of the 118 samples were sent for WGS. The 

RTK/RAS/RAF pathway alterations used to define the RPA(+) or RPA(–) cases are listed in 

Table S1.

(B) WGS uncovered genomic alterations in the RTK/RAS/RAF pathway in 28/85 samples; 

57/85 samples remain as RPA(–) after WGS analysis.

(C) Visualization of sequencing reads covering a KRAS p.G12C mutation in WGS (upper 

panel) and WES (lower panel) for sample (TCGA-55–7574). Both read depth and the 

number of reads supporting the mutation are higher in WGS than in WES.

(D) An example of EGFR amplification coupled with EGFR overexpression in TCGA-50–

5939. In the second panel, purity-adjusted copy number and SV junctions (red lines) support 

a BFBC event underlying the amplification. Lower panels indicate WGS read depth and 

gene location in the region. CN, copy number.

(E) Example of a RASA1 simple deletion spanning from exon 21 to the end of the gene (12 

kbp) coupled with RASA1 loss of expression in TCGA-55–8614.

See also Figure S1.
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Figure 2. Recurrent coding alterations in RPA(–)G LUADs
(A) Overview of genomic alterations in 57 RPA(–)G LUADs. Genes significantly mutated 

(*) or significantly amplified/deleted in the RPA(–)G samples are listed.

(B and C) Example of KEAP1 (3 kbp length) (B) and (C) STK11 (8 kbp length) simple, 

homozygous deletion (CN = 0), resulting in loss of expression. The distribution of the 

KEAP1 or STK11 expression is plotted based on the full TCGA LUAD cohort.

(D) Expression comparison of samples with loss-of-function alterations in STK11 and (E) 

KEAP1 to other RPA(–)G LUAD samples. p values are calculated from Mann-Whitney U 
tests. Boxplots show median, interquartile range, and 1.5 times the interquartile range.

See also Figure S1.
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Figure 3. Identification of ILF2 promoter mutations in RPA(–)G LUADs
(A) Three genes with non-coding mutations nominated through recurrence analysis across 

LUAD-related ATAC peaks (left). Red dots indicate loci with FDR < 0.25.

(B) Same as (A), but restricted to ATAC-seq peaks in genes with RSEM ≥ 10 across TCGA 

LUAD and recurrently amplified in RPA(–)G samples. Red dots indicate FDR < 0.1.

(C) Among 57 RPA(–)G samples, 6 SNVs are observed in the promoter region of ILF2; all 

are located within ATAC-seq peaks.

(D) Expression comparison of RPA(–)G samples with ILF2 promoter mutations and 

amplifications. p values are calculated from linear regression analysis correlating expression, 

adjusting for the local copy number of ILF2 and purity. Boxplot shows median, interquartile 

range, and 1.5 times the interquartile range. See also Figure S3.
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Figure 4. Classification of SVs in RPA(–)G LUADs
(A) Identification of simple and complex SV events. Upper panel: SVs resulting in copy-

number gain (double minute, BFBC, tyfonas, pyrgo, simple duplication). Lower panel: SVs 

resulting in copy-number loss (chromothripsis, rigma, chromoplexy, templated insertion 

chain, simple deletion). Key indicates the range of event count of SV types observed in each 

sample.

(B) Expression quantile of genes located in SV types with copy-number gain.
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(C) Simple deletion count is more significantly enriched in the TP53 mutant RPA(–)G 

samples than in the TP53-wild-type RPA(–)G samples. p value is obtained from Mann-

Whitney U test. Violin plots reflect kernel density estimations.

(D and E) Example of a double minute in TCGA-55–5899 spanning 3 genes (D), and (E) 2 

of which (UBL3 and LIG4) showed marked overexpression relative to RNA-seq data for the 

full TCGA LUAD cohort. See also Figure S4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA somatic mutation, copy Genomic Data Commons; https://gdc.cancer.gov/about-data/publications/pancanatlas

number, aneuploidy, genetic ancestry, (Campbell et al., 2016;

clinical data Carrot-Zhang et al., 2020)

COSMIC N/A https://cancer.sanger.ac.uk/cosmic

1000 Genomes Project data (Auton et al., 2015) https://www.internationalgenome.org/

ExAC (Karczewski et al., 2017) https://gnomad.broadinstitute.org/

CIVic (Griffith et al., 2017) https://civicdb.org/home

UniProt (UniProt Consortium, 2019) https://www.uniprot.org/

TCGA ATAC-seq data (Corces et al., 2018) https://gdc.cancer.gov/about-data/publications/ATACseq-AWG

TCGA normalized mRNA data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

Software and algorithms

BWA v0.6.2 (Li and Durbin, 2009) https://github.com/lh3/bwa

NovoSort v1.03.01 N/A http://www.novocraft.com/products/novosort/

GATK v3.4 (McKenna et al., 2010) https://github.com/broadinstitute/gatk

MuTect v1.1.7 (Cibulskis et al., 2013) https://github.com/broadinstitute/mutect

Strelka v1.0.14 (Saunders et al., 2012) https://github.com/Illumina/strelka

LoFreq v2.1.3a (Wilm et al., 2012) https://csb5.github.io/lofreq/

Pindel v0.2.5 (Ye et al., 2009) https://github.com/genome/pindel

Scalpel v0.5.3 (Narzisi et al., 2014) https://github.com/hanfang/scalpel-protocol

EBI validator v 0.4.3 N/A https://github.com/EBIvariation/vcf-validator

snpEff and snpSift (Cingolani et al., 2012a, 2012b) https://pcingola.github.io/SnpEff/

Funseq2 (Fu et al., 2014) https://github.com/khuranalab/FunSeq2_DC

SignatureAnalyzer (Kim et al., 2016) https://github.com/broadinstitute/getzlab-SignatureAnalyzer

GISTIC 2.0 (Mermel et al., 2011)
http://portals.broadinstitute.org/cgi-bin/cancer/publications/
pub_paper.cgi?mode=view&paper_id=216&p=t

Titan (Ha et al., 2014) https://github.com/gavinha/TitanCNA

SvABA (Wala et al., 2018) https://github.com/walaj/svaba
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